363
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Long-range gamma phase synchronization as a compensatory strategy during working memory in high-performing patients with schizophrenia

, , , ORCID Icon, & ORCID Icon
Pages 663-681 | Received 05 Mar 2017, Accepted 12 Dec 2017, Published online: 01 Feb 2018

References

  • Bacon, A. M., & Handley, S. J. (2014). Reasoning and dyslexia: Is visual memory a compensatory resource? Dyslexia, 20(4), 330–345. doi:10.1002/dys.v20.4
  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. doi:10.1126/science.1736359
  • Barceló, F., Suwazono, S., & Knight, R. T. (2000). Prefrontal modulation of visual processing in humans. Nature Neuroscience, 3(4), 399–403. doi:10.1038/73975
  • Barch, D. M., & Smith, E. (2008). The cognitive neuroscience of working memory: Relevance to CNTRICS and schizophrenia. Biological Psychiatry, 64(1), 11–17. doi:10.1016/j.biopsych.2008.03.003
  • Barr, M. S., Farzan, F., Tran, L. C., Chen, R., Fitzgerald, P. B., & Daskalakis, Z. J. (2010). Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory. Schizophrenia Research, 121(1–3), 146–152. doi:10.1016/j.schres.2010.05.023
  • Basar-Eroglu, C., Brand, A., Hildebrandt, H., Karolina Kedzior, K., Mathes, B., & Schmiedt, C. (2007). Working memory related gamma oscillations in schizophrenia patients. International Journal of Psychophysiology, 64(1), 39–45. doi:10.1016/j.ijpsycho.2006.07.007
  • Bastos, A. M., & Schoffelen, J.-M. (2016). A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience, 9, 175. doi:10.3389/fnsys.2015.00175
  • Bavelier, D., Newman, A. J., Mukherjee, M., Hauser, P., Kemeny, S., Braun, A., & Boutla, M. (2008). Encoding, rehearsal, and recall in signers and speakers: Shared network but differential engagement. Cerebral Cortex, 18(10), 2263–2274. doi:10.1093/cercor/bhm248
  • Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., & Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenia and schizoaffective patients. Archive of General Psychiatry, 48(11), 996–1001. doi:10.1001/archpsyc.1991.01810350036005
  • Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. doi:10.1126/science.1138071
  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. doi:10.1126/science.1099745
  • Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. American Journal of Psychiatry, 160(12), 2209–2215. doi:10.1176/appi.ajp.160.12.2209
  • Cannon, T. D., Glahn, D. C., Kim, J., Van Erp, T. G. M., Karlsgodt, K., Cohen, M. S., … Shirinyan, D. (2005). Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Archives of General Psychiatry, 62(10), 1071–1080. doi:10.1001/archpsyc.62.10.1071
  • Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663–667. doi:10.1038/nature08002
  • Chen, C.-M. A., Stanford, A. D., Mao, X., Abi-Dargham, A., Shungu, D. C., Lisanby, S. H., … Kegeles, L. S. (2014). GABA level, gamma oscillation, and working memory performance in schizophrenia. NeuroImage: Clinical, 4, 531–539. doi:10.1016/j.nicl.2014.03.007
  • Chen, C.-M. A., Mathalon, D. H., Roach, B. J., Cavus, I., Spencer, D. D., & Ford, J. M. (2011). The corollary discharge in humans is related to synchronous neural oscillations. Journal of Cognitive Neuroscience, 23(10), 2892–2904. doi:10.1162/jocn.2010.21589
  • Cho, R. Y., Konecky, R. O., & Carter, C. S. (2006). Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19878–19883. doi:10.1073/pnas.0609440103
  • Coyle, J. T. (2012). NMDA receptor and schizophrenia. Schizophrenia Bulletin, 38(5), 920–926. doi:10.1093/schbul/sbs076
  • Crossley, N. A., Mechelli, A., Fusar-Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., … McGuire, P. K. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis. Human Brain Mapping, 30(12), 4129–4137. doi:10.1002/hbm.20834
  • Deserno, L., Sterzer, P., Wüstenberg, T., Heinz, A., & Schlagenhauf, F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. Journal of Neuroscience, 32(1), 12–20. doi:10.1523/JNEUROSCI.3405-11.2012
  • Doesburg, S. M., Roggeveen, A. B., Kitajo, K., & Ward, L. M. (2008). Large-scale gamma-band phase synchronization and selective attention. Cerebral Cortex, 18(2), 386–396. doi:10.1093/cercor/bhm073
  • Duncan, C. E., Webster, M. J., Rothmond, D. A., Bahn, S., Elashoff, M., & Shannon Weickert, C. (2010). Prefrontal GABAA receptor α-subunit expression in normal postnatal human development and schizophrenia. Journal of Psychiatric Research, 44(10), 673–681. doi:10.1016/j.jpsychires.2009.12.007
  • Engel, A. K., König, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252(5009), 1177–1179. doi:10.1126/science.252.5009.1177
  • Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., & Fernández, G. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264. doi:10.1038/nn759
  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV TR axis I disorders, research version, non-patient edition (SCID-I/NP). New York: Biometric Research, New York State Psychiatric Institute.
  • Forbes, N. F., Carrick, L. A., McIntosh, A. M., & Lawrie, S. M. (2008). Working memory in schizophrenia: A meta-analysis. Psychological Medicine, 39(6), 889–905. doi:10.1017/S0033291708004558
  • Ford, J. M., Gray, M., Faustman, W. O., Heinks, T. H., & Mathalon, D. H. (2005). Reduced gamma-band coherence to distorted feedback during speech when what you say is not what you hear. International Journal of Psychophysiology, 57(2), 143–150. doi:10.1016/j.ijpsycho.2005.03.002
  • Fries, P., Neuenschwander, S., Engel, A. K., Goebel, R., & Singer, W. (2001). Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neuroscience, 4(2), 194–200. doi:10.1038/84032
  • Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125. doi:10.1016/S0920-9964(97)00140-0
  • Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3(2), 89–97.
  • Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38(5), 950–957. doi:10.1093/schbul/sbs010
  • Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. doi:10.1016/0013-4694(83)90135-9
  • Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153(3), 321–330. doi:10.1176/ajp.153.3.321
  • Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210. doi:10.1126/science.1171402
  • Haenschel, C., Bittner, R. A., Waltz, J., Haertling, F., Wibral, M., Singer, W., … Rodriguez, E. (2009). Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. Journal of Neuroscience, 29(30), 9481–9489. doi:10.1523/JNEUROSCI.1428-09.2009
  • Harvey, P.-O., Lee, J., Cohen, M. S., Engel, S. A., Glahn, D. C., Nuechterlein, K. H., … Green, M. F. (2011). Altered dynamic coupling of lateral occipital complex during visual perception in schizophrenia. NeuroImage, 55(3), 1219–1226. doi:10.1016/j.neuroimage.2010.12.045
  • Heaton, R. K., Gladsjo, J. A., Palmer, B. W., Kuck, J., Marcotte, T. D., & Jeste, D. V. (2001). Stability and course of neuropsychological deficits in schizophrenia. Archives of General Psychiatry, 58(1), 24–32. doi:10.1001/archpsyc.58.1.24
  • Henseler, I., Falkai, P., & Gruber, O. (2010). Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: Relation to performance and clinical symptoms. Journal of Psychiatric Research, 44(6), 364–372. doi:10.1016/j.jpsychires.2009.09.003
  • Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116(12), 2719–2733. doi:10.1016/j.clinph.2005.07.007
  • Jackson, M. F., Esplin, B., & Čapek, R. (2000). Reversal of the activity-dependent suppression of GABA-mediated inhibition in hippocampal slices from γ-vinyl GABA (vigabatrin)-pretreated rats. Neuropharmacology, 39(1), 65–74. doi:10.1016/S0028-3908(99)00075-1
  • Johannesen, J. K., Bi, J., Jiang, R., Kenney, J. G., & Chen, C.-M. A. (2016). Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatric Electrophysiology, 2(1), 1–21. doi:10.1186/s40810-016-0017-0
  • Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95(14), 8410–8413. doi:10.1073/pnas.95.14.8410
  • Juckel, G., & Morosini, P. L. (2008). The new approach: Psychosocial functioning as a necessary outcome criterion for therapeutic success in schizophrenia. Current Opinion in Psychiatry, 21(6), 630–639. doi:10.1097/YCO.0b013e328314e144
  • Kang, S. S., Sponheim, S. R., Chafee, M. V., & MacDonald, A. W. (2011). Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia. Neuropsychologia, 49(10), 2836–2847. doi:10.1016/j.neuropsychologia.2011.06.009
  • Kegeles, L. S., Mao, X., Dyke, J., Gonzales, R., Soones, T. N., & Shungu, D. C. (2006). Test-retest reliability of dorsolateral prefrontal cortical GABA measurement using an 8-channel phased-array head coil with the J-editing technique at 3T. Proceedings of the International Society for Magnetic Resonance in Medicine, 14, 489.
  • Kegeles, L. S., Mao, X., Stanford, A., Girgis, R., Ojeil, N., Xu, X., … Shungu, D. C. (2012). Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Archives of General Psychiatry, 69(5), 449–459. doi:10.1001/archgenpsychiatry.2011.1519
  • Kikuchi, M., Hashimoto, T., Nagasawa, T., Hirosawa, T., Minabe, Y., Yoshimura, M., … Koenig, T. (2011). Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naïve patients with schizophrenia. Schizophrenia Research, 130(1–3), 187–194. doi:10.1016/j.schres.2011.06.003
  • Kirschen, M. P., Chen, S. H. A., & Desmond, J. E. (2010). Modality specific cerebro-cerebellar activations in verbal working memory: An fMRI study. Behavioural Neurology, 23(1–2), 51–63. doi:10.1155/2010/587450
  • Koychev, I., Deakin, J. F. W., Haenschel, C., & El-Deredy, W. (2011). Abnormal neural oscillations in schizotypy during a visual working memory task: Support for a deficient top-down network? Neuropsychologia, 49(10), 2866–2873. doi:10.1016/j.neuropsychologia.2011.06.012
  • Kronland-Martinet, R., Morlet, J., & Grossmann, A. (1987). Analysis of sound patterns through wavelet transforms. International Journal of Pattern Recognition and Artificial Intelligence, 01(02), 273–302. doi:10.1142/S0218001487000205
  • Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. doi:10.1002/(ISSN)1097-0193
  • Lakatos, P., Chen, C.-M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292. doi:10.1016/j.neuron.2006.12.011
  • Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611. doi:10.1037/0021-843X.114.4.599
  • Lee, S.-H., Kim, D.-W., Kim, E.-Y., Kim, S., & Im, C.-H. (2010). Dysfunctional gamma-band activity during face structural processing in schizophrenia patients. Schizophrenia Research, 119(1–3), 191–197. doi:10.1016/j.schres.2010.02.1058
  • Lehmann, A., Isacsson, H., & Hamberger, A. (1983). Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. Journal of Neurochemistry, 40(5), 1314–1320. doi:10.1111/jnc.1983.40.issue-5
  • Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35(1), 57–67. doi:10.1016/j.tins.2011.10.004
  • Lewis, D. A., & González-Burgos, G. (2008). Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology, 33(1), 141–165. doi:10.1038/sj.npp.1301563
  • Lewis, D. A., & Hashimoto, T. (2007). Deciphering the disease process of schizophrenia: The contribution of cortical GABA neurons. International Review of Neurobiology, 78, 109–131.
  • Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K., Sprock, J., Swerdlow, N. R., & Braff, D. L. (2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biological Psychiatry, 60(11), 1231–1240. doi:10.1016/j.biopsych.2006.03.055
  • Luber, B., Kinnunen, L. H., Rakitin, B. C., Ellsasser, R., Stern, Y., & Lisanby, S. H. (2007). Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: Frequency- and time-dependent effects. Brain Research, 1128(1), 120–129. doi:10.1016/j.brainres.2006.10.011
  • Mecklinger, A., & Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Research, 4(3), 211–224. doi:10.1016/S0926-6410(96)00034-1
  • Meyer-Lindenberg, A. S., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry, 62(4), 379–386. doi:10.1001/archpsyc.62.4.379
  • Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822. doi:10.1001/archgenpsychiatry.2009.91
  • Minzenberg, M. J., Yoon, J. H., Cheng, Y., & Carter, C. (2016). Sustained modafinil treatment effects on control-related gamma oscillatory power in schizophrenia. Neuropsychopharmacology, 41(5), 1231–1240. doi:10.1038/npp.2015.271
  • Moghaddam, B., & Krystal, J. H. (2012). Capturing the angel in “angel dust”: Twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophrenia Bulletin, 38(5), 942–949. doi:10.1093/schbul/sbs075
  • Mulert, C., Kirsch, V., Pascual-Marqui, R., McCarley, R. W., & Spencer, K. M. (2011). Long-range synchrony of gamma oscillations and auditory hallucination symptoms in schizophrenia. International Journal of Psychophysiology, 79(1), 55–63. doi:10.1016/j.ijpsycho.2010.08.004
  • Nurnberger, J. I., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., … Reich, T. (1994). Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Archives of General Psychiatry, 51(11), 849–859. doi:10.1001/archpsyc.1994.03950110009002
  • Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J., & Emson, P. C. (1999). Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: Focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression. Neuroscience, 93(2), 441–448. doi:10.1016/S0306-4522(99)00189-X
  • Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7580–7585. doi:10.1073/pnas.0913113107
  • Petroff, O. A. (2002). GABA and glutamate in the human brain. Neuroscientist, 8(6), 562–573. doi:10.1177/1073858402238515
  • Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2011). Screening questionnaire before TMS: An update. Clinical Neurophysiology, 122(8), 1686. doi:10.1016/j.clinph.2010.12.037
  • Rothman, D. L., Petroff, O. A., Behar, K. L., & Mattson, R. H. (1993). Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proceedings of the National Academy of Sciences of the United States of America, 90(12), 5662–5666. doi:10.1073/pnas.90.12.5662
  • Rutter, L., Carver, F. W., Holroyd, T., Nadar, S. R., Mitchell-Francis, J., Apud, J., … Coppola, R. (2009). Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human Brain Mapping, 30(10), 3254–3264. doi:10.1002/hbm.v30:10
  • Sailasuta, N., LeRoux, P., Hurd, R., Wang, P., Sachs, N., & Ketter, T. (2001). Detection of cerebral gamma-aminobutyric acid (GABA) in bipolar disorder patients and healthy volunteers at 3T. Proceedings of the International Society for Magnetic Resonance in Medicine, 6, 1011.
  • Sauseng, P., Klimesch, W., Doppelmayr, M., Hanslmayr, S., Schabus, M., & Gruber, W. R. (2004). Theta coupling in the human electroencephalogram during a working memory task. Neuroscience Letters, 354(2), 123–126. doi:10.1016/j.neulet.2003.10.002
  • Schoffelen, J.-M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 1857–1865. doi:10.1002/hbm.v30:6
  • Schulz, S. B., Heidmann, K. E., Mike, A., Klaft, Z.-J., Heinemann, U., & Gerevich, Z. (2012). First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5-HT3 and D3 receptors. British Journal of Pharmacology, 167(7), 1480–1491. doi:10.1111/j.1476-5381.2012.02107.x
  • Shungu, D. C., Mao, X., & Kegeles, L. S. (2006). Evaluation of GABA detection sensitivity gains achieved with an 8-channel phased-array head coil at 3.0 T in the human dorsolateral prefrontal cortex using the J-editing technique. Proceedings of the International Society for Magnetic Resonance in Medicine, 14, 488.
  • Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49–65. doi:10.1016/S0896-6273(00)80821-1
  • Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20. doi:10.1093/cercor/6.1.11
  • Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702. doi:10.1038/nature07991
  • Soto, D., Rotshtein, P., Hodsoll, J., Mevorach, C., & Humphreys, G. W. (2012). Common and distinct neural regions for the guidance of selection by visuoverbal information held in memory: Converging evidence from fMRI and rTMS. Human Brain Mapping, 33(1), 105–120. doi:10.1002/hbm.21196
  • Spencer, K. M. (2008). Visual gamma oscillations in schizophrenia: Implications for understanding neural circuitry abnormalities. Clinical EEG and Neuroscience, 39(2), 65–68. doi:10.1177/155005940803900208
  • Spencer, K. M. (2012). Baseline gamma power during auditory steady-state stimulation in schizophrenia. Frontiers in Human Neuroscience, 5, 190. doi:10.3389/fnhum.2011.00190
  • Spencer, K. M., & Ghorashi, S. (2014). Oscillatory dynamics of Gestalt perception in schizophrenia revisited. Frontiers in Psychology, 5, 68. doi:10.3389/fpsyg.2014.00068
  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654. doi:10.1126/science.153.3736.652
  • Suchan, B. (2008). Neuroanatomical correlates of processing in visual and visuospatial working memory. Cognitive Processing, 9(1), 45–51. doi:10.1007/s10339-007-0186-7
  • Sun, L., Castellanos, N., Grützner, C., Koethe, D., Rivolta, D., Wibral, M., … Uhlhaas, P. J. (2013). Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naïve, first episode schizophrenia. Schizophrenia Research, 150(2–3), 519–525. doi:10.1016/j.schres.2013.08.023
  • Symond, M. B., Harris, A. W. F., Gordon, E., & Williams, L. M. (2005). “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity? American Journal of Psychiatry, 162(3), 459–465. doi:10.1176/appi.ajp.162.3.459
  • Tek, C., Gold, J., Blaxton, T., Wilk, C., McMahon, R. P., & Buchanan, R. W. (2002). Visual perceptual and working memory impairments in schizophrenia. Archives of General Psychiatry, 59(2), 146–153. doi:10.1001/archpsyc.59.2.146
  • Tu, P.-C., Lee, Y.-C., Chen, Y.-S., Li, C.-T., & Su, T.-P. (2013). Schizophrenia and the brain’s control network: Aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophrenia Research, 147(2–3), 339–347. doi:10.1016/j.schres.2013.04.011
  • Uhlhaas, P. J., Linden, D., Singer, W., Haenschel, C., Lindner, M., Maurer, K., & Rodriguez, E. (2006). Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. Journal of Neuroscience, 26(31), 8168–8175. doi:10.1523/JNEUROSCI.2002-06.2006
  • Uhlhaas, P. J., & Singer, W. (2015). Oscillations and neuronal dynamics in schizophrenia: The search for basic symptoms and translational opportunities. Biological Psychiatry, 77(12), 1001–1009. doi:10.1016/j.biopsych.2014.11.019
  • Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 883–890. doi:10.1073/pnas.95.3.883
  • Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239. doi:10.1038/35067550
  • Volk, D. W., Pierri, J. N., Fritschy, J.-M., Auh, S., Sampson, A. R., & Lewis, D. A. (2002). Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cerebral Cortex, 12(10), 1063–1070. doi:10.1093/cercor/12.10.1063
  • Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38(3), 301–313. doi:10.1016/S0167-8760(00)00172-0
  • Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review, 72, 89–104. doi:10.1037/h0021797
  • Wolf, R. C., Vasic, N., Sambataro, F., Höse, A., Frasch, K., Schmid, M., & Walter, H. (2009). Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(8), 1464–1473. doi:10.1016/j.pnpbp.2009.07.032
  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316(5831), 1609–1612. doi:10.1126/science.1139597

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.