485
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Reduced delayed reward selection by Alzheimer’s disease and mild cognitive impairment patients during intertemporal decision-making

, , , , , & show all
Pages 298-306 | Received 03 Oct 2019, Accepted 20 Dec 2019, Published online: 08 Jan 2020

References

  • Achterberg, M., Peper, J. S., van Duijvenvoorde, A. C., Mandl, R. C., & Crone, E. A. (2016). Frontostriatal white matter integrity predicts development of delay of gratification: A longitudinal study. Journal of Neuroscience, 36(6), 1954–1961.
  • Al-Khaled, M., Heldmann, M., Bolstorff, I., Hagenah, J., & Munte, T. F. (2015). Intertemporal choice in Parkinson’s disease and restless legs syndrome. Parkinsonism & Related Disorders, 21(11), 1330–1335.
  • Association, A. S. (2018). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429.
  • Ballard, I. C., Kim, B., Liatsis, A., Aydogan, G., Cohen, J. D., & McClure, S. M. (2017). More is meaningful: The magnitude effect in intertemporal choice depends on self-control. Psychological Science, 28(10), 1443–1454.
  • Behrens, T., Bertoux, M., Boutet, C., Lehericy, S., Dubois, B., Fossati, P., … Pessiglione, M. (2013). A critical role for the hippocampus in the valuation of imagined outcomes. PLoS Biology, 11(10), e1001684.
  • Belfort, T., Simões, P., de Sousa, M. F. B., Santos, R. L., Barbeito, I., Torres, B., & Dourado, M. C. N. (2018). The relationship between social cognition and awareness in Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 31(1), 27–33.
  • Berns, G. S., Laibson, D., & Loewenstein, G. (2007). Intertemporal choice–Toward an integrative framework. Trends in Cognitive Sciences, 11(11), 482–488.
  • Bertoux, M., de Souza, L. C., Zamith, P., Dubois, B., & Bourgeois-Gironde, S. (2015). Discounting of future rewards in behavioural variant frontotemporal dementia and Alzheimer’s disease. Neuropsychology, 29(6), 933–939.
  • Borella, E., Carretti, B., Mitolo, M., Zavagnin, M., Caffarra, P., Mammarella, N., … Piras, F. (2017). Characterizing cognitive inhibitory deficits in mild cognitive impairment. Psychiatry Research, 251, 342–348.
  • Borson, S., Frank, L., Bayley, P. J., Boustani, M., Dean, M., Lin, P. J., … Ashford, J. W. (2013). Improving dementia care: The role of screening and detection of cognitive impairment. Alzheimer’s & Dementia, 9(2), 151–159.
  • Bossaerts, P., & Murawski, C. (2017). Computational complexity and human decision-making. Trends in Cognitive Sciences, 21(12), 917–929.
  • Bromberg-Martin, E. S., & Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction of reward information. Nature Neuroscience, 14(9), 1209–1216.
  • Carnevale, J. J., Fujita, K., Han, H. A., & Amit, E. (2014). Immersion versus transcendence. Social Psychological and Personality Science, 6(1), 92–100.
  • Ciarmiello, A., Giovannini, E., Riondato, M., Giovacchini, G., Duce, V., Ferrando, O., … Tartaglione, A. (2019). Longitudinal cognitive decline in mild cognitive impairment subjects with early amyloid-beta neocortical deposition. European Journal of Nuclear Medicine and Molecular Imaging, 46(10), 2090–2098.
  • Clare, L., Whitaker, C. J., Craik, F. I., Bialystok, E., Martyr, A., Martin-Forbes, P. A., … Hindle, J. V. (2016). Bilingualism, executive control, and age at diagnosis among people with early-stage Alzheimer’s disease in wales. Journal of Neuropsychology, 10(2), 163–185.
  • Coelho, S., Guerreiro, M., Chester, C., Silva, D., Maroco, J., Paglieri, F., & de Mendonca, A. (2017). Delay discounting in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 39(4), 336–346.
  • Crockett, M. J., Braams, B. R., Clark, L., Tobler, P. N., Robbins, T. W., & Kalenscher, T. (2013). Restricting temptations: Neural mechanisms of precommitment. Neuron, 79(2), 391–401.
  • Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P., Cummings, J., … Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. The Lancet Neurology, 6(8), 734–746.
  • Duinkerken, E. V., Farme, J., Landeira-Fernandez, J., Dourado, M. C., Laks, J., & Mograbi, D. C. (2018). Medical and research consent decision-making capacity in patients with Alzheimer’s disease: A systematic review. Journal of Alzheimer’s Disease, 65(3), 917–930.
  • El Haj, M., Janssen, S. M. J., & Antoine, P. (2017). Memory and time: Backward and forward telescoping in Alzheimer’s disease. Brain and Cognition, 117, 65–72.
  • Eppinger, B., Heekeren, H. R., & Li, S. C. (2018). Age differences in the neural mechanisms of intertemporal choice under subjective decision conflict. Cerebral Cortex, 28(11), 3764–3774.
  • Essex, B. G., Clinton, S. A., Wonderley, L. R., & Zald, D. H. (2012). The impact of the posterior parietal and dorsolateral prefrontal cortices on the optimization of long-term versus immediate value. Journal of Neuroscience, 32(44), 15403–15413.
  • Etters, L., Goodall, D., & Harrison, B. E. (2008). Caregiver burden among dementia patient caregivers: A review of the literature. Journal of the American Academy of Nurse Practitioners, 20(8), 423–428.
  • Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature Neuroscience., 13(5), 538–539.
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
  • Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1(1), 107–143.
  • Halfmann, K., Hedgcock, W., & Denburg, N. L. (2013). Age-related differences in discounting future gains and losses. Journal of Neuroscience, Psychology, and Economics, 6(1), 42.
  • Hamilton, M. (1959). The assessment of anxiety states by rating. British Journal of Medical Psychology, 32(1), 50–55.
  • Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56.
  • Han, S. D., Boyle, P. A., James, B. D., Yu, L., & Bennett, D. A. (2015). Mild cognitive impairment is associated with poorer decision-making in community-based older persons. Journal of the American Geriatrics Society, 63(4), 676–683.
  • Hare, T. A., Malmaud, J., & Rangel, A. (2011). Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. Journal of Neuroscience, 31(30), 11077–11087.
  • Haussmann, R., Werner, A., Gruschwitz, A., Osterrath, A., Lange, J., Donix, K. L., … Donix, M. (2017). Precuneus structure changes in amnestic mild cognitive impairment. American Journal of Alzheimer’s Disease & Other Dementias®, 32(1), 22–26.
  • Ho, B. L., Lin, S. F., Chou, P. S., Hsu, C. Y., Liou, L. M., & Lai, C. L. (2019). Impaired conflict monitoring in cognitive decline. Behavioural Brain Research, 363, 70–76.
  • Huckans, M., Seelye, A., Woodhouse, J., Parcel, T., Mull, L., Schwartz, D., … Hoffman, W. (2011). Discounting of delayed rewards and executive dysfunction in individuals infected with hepatitis C. Journal of Clinical and Experimental Neuropsychology, 33(2), 176–186.
  • Hugo, J., & Ganguli, M. (2014). Dementia and cognitive impairment: Epidemiology, diagnosis, and treatment. Clinics in Geriatric Medicine, 30(3), 421–442.
  • James, B. D., Boyle, P. A., Yu, L., Han, S. D., & Bennett, D. A. (2015). Cognitive decline is associated with risk aversion and temporal discounting in older adults without dementia. PloS One, 10(4), e0121900.
  • Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer’s disease: The role of the hippocampus. Reviews in the Neurosciences, 28(7), 705–714.
  • Jimura, K., Chushak, M. S., Westbrook, A., & Braver, T. S. (2018). Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cerebral Cortex, 28(4), 1105–1116.
  • Kamigaki, T. (2019). Prefrontal circuit organization for executive control. Neuroscience Research, 140, 23–36.
  • Kanchanatawan, B., Tangwongchai, S., Supasitthumrong, T., Sriswasdi, S., Maes, M., & Ginsberg, S. D. (2018). Episodic memory and delayed recall are significantly more impaired in younger patients with deficit schizophrenia than in elderly patients with amnestic mild cognitive impairment. PloS One, 13(5), e0197004.
  • Kim, S., Kang, Y., Yu, K. H., & Lee, B. C. (2016). Disproportionate decline of executive functions in early mild cognitive impairment, late mild cognitive impairment, and mild Alzheimer’s disease. Dementia and Neurocognitive Disorders, 15(4), 159–164.
  • Kirby, K. N., Petry, N. M., & Bickel, W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General, 128(1), 78.
  • Lagorio, C. H., & Madden, G. J. (2005). Delay discounting of real and hypothetical rewards III: Steady-state assessments, forced-choice trials, and all real rewards. Behavioural Processes, 69(2), 173–187.
  • Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The Gerontologist, 9(3), 179–186.
  • Lee, T., Yuen, K., & Chan, C. (2002). Normative data for neuropsychological measures of fluency, attention, and memory measures for Hong Kong Chinese. Journal of Clinical and Experimental Neuropsychology, 24(5), 615–632.
  • Lempert, K. M., Speer, M. E., Delgado, M. R., & Phelps, E. A. (2017). Positive autobiographical memory retrieval reduces temporal discounting. Social Cognitive and Affective Neuroscience, 12(10), 1584–1593.
  • Lindbergh, C. A., Puente, A. N., Gray, J. C., Mackillop, J., & Miller, L. S. (2014a). Delay and probability discounting as candidate markers for dementia: An initial investigation. Archives of Clinical Neuropsychology, 29(7), 651–662.
  • Lindbergh, C. A., Puente, A. N., Gray, J. C., MacKillop, J., & Miller, L. S. (2014b). Discounting preferences and response consistency as markers of functional ability in community-dwelling older adults. Journal of Clinical and Experimental Neuropsychology, 36(10), 1112–1123.
  • Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672.
  • Mak, E., Gabel, S., Su, L., Williams, G. B., Arnold, R., Passamonti, L., … Vazquez Rodríguez, P. (2017). Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer’s disease, and dementia with Lewy bodies. International Psychogeriatrics, 29(4), 545–555.
  • Marinescu, R. V., Eshaghi, A., Lorenzi, M., Young, A. L., Oxtoby, N. P., Garbarino, S., & Alexander, D. C.; Alzheimer’s Disease Neuroimaging, Initiatiove. (2019). DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders. Neuroimage, 192, 166–177.
  • McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27(21), 5796–5804.
  • McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507.
  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.
  • Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.
  • Mueller, S. M., Arias, M. G., Mejuto Vazquez, G., Schiebener, J., Brand, M., & Wegmann, E. (2019). Decision support in patients with mild Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 41(5), 484–496.
  • Nichols, E., Szoeke, C. E. I., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., … Murray, C. J. L. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the global burden of disease study 2016. The Lancet Neurology, 18(1), 88–106.
  • Niki, C., Kumada, T., Maruyama, T., Tamura, M., & Muragaki, Y. (2019). Role of frontal functions in executing routine sequential tasks. Frontiers in Psychology, 10, 169.
  • Ogama, N., Yoshida, M., Nakai, T., Niida, S., Toba, K., & Sakurai, T. (2016). Frontal white matter hyperintensity predicts lower urinary tract dysfunction in older adults with amnestic mild cognitive impairment and Alzheimer’s disease. Geriatrics & Gerontology International, 16(2), 167–174.
  • Peters, J., & Buchel, C. (2011). The neural mechanisms of inter-temporal decision-making: Understanding variability. Trends in Cognitive Sciences, 15(5), 227–239.
  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194.
  • Petry, N. M., Kirby, K. N., & Kranzler, H. R. (2002). Effects of gender and family history of alcohol dependence on a behavioral task of impulsivity in healthy subjects. Journal of Studies on Alcohol, 63(1), 83–90.
  • Pinkham, A. E., Hopfinger, J. B., Ruparel, K., & Penn, D. L. (2008). An investigation of the relationship between activation of a social cognitive neural network and social functioning. Schizophrenia Bulletin, 34(4), 688–697.
  • Robertson, S. H., & Rasmussen, E. B. (2018). Comparison of potentially real versus hypothetical food outcomes in delay and probability discounting tasks. Behavioural Processes, 149, 8–15.
  • Salvado, G., Brugulat-Serrat, A., Sudre, C. H., Grau-Rivera, O., Suarez-Calvet, M., Falcon, C., … Study, A. (2019). Spatial patterns of white matter hyperintensities associated with Alzheimer’s disease risk factors in a cognitively healthy middle-aged cohort. Alzheimer’s Research & Therapy, 11(1), 12.
  • Shaked, D., Katzel, L. I., Seliger, S. L., Gullapalli, R. P., Davatzikos, C., Erus, G., … Waldstein, S. R. (2018). Dorsolateral prefrontal cortex volume as a mediator between socioeconomic status and executive function. Neuropsychology, 32(8), 985–995.
  • Shrestha, P., & Klann, E. (2016). Alzheimer’s disease: Lost memories found. Nature, 531(7595), 450–451.
  • Singh, V., Chertkow, H., Lerch, J. P., Evans, A. C., Dorr, A. E., & Kabani, N. J. (2006). Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain, 129(Pt 11), 2885–2893.
  • Smith, B. J., Monterosso, J. R., Wakslak, C. J., Bechara, A., & Read, S. J. (2018). A meta-analytical review of brain activity associated with intertemporal decisions: Evidence for an anterior-posterior tangibility axis. Neuroscience & Biobehavioral Reviews, 86, 85–98.
  • Spencer, B. E., Jennings, R. G., & Brewer, J. B., Alzheimer’s Disease Neuroimaging, Initiative. (2019). Combined biomarker prognosis of mild cognitive impairment: An 11-year follow-up study in the Alzheimer’s disease neuroimaging initiative. Journal of Alzheimer’s Diseas, 68(4), 1549–1559.
  • Sripada, C. S., Gonzalez, R., Phan, K. L., & Liberzon, I. (2011). The neural correlates of intertemporal decision-making: Contributions of subjective value, stimulus type, and trait impulsivity. Human Brain Mapping, 32(10), 1637–1648.
  • Sun, L. L., Yang, S. L., Sun, H., Li, W. D., & Duan, S. R. (2019). Molecular differences in Alzheimer’s disease between male and female patients determined by integrative network analysis. Journal of Cellular and Molecular Medicine, 23(1), 47–58.
  • Turner, B. M., Rodriguez, C. A., Liu, Q., Molloy, M. F., Hoogendijk, M., & McClure, S. M. (2019). On the neural and mechanistic bases of self-control. Cerebral Cortex, 29(2), 732–750.
  • Wang, L., Jin, S., He, K., Chen, X., Ji, G., Bai, X., … Wang, K. (2018). Increased delayed reward during intertemporal decision-making in schizophrenic patients and their unaffected siblings. Psychiatry Research, 262, 246–253.
  • Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Cedarbaum, J., … Trojanowski, J. Q. (2015). 2014 update of the Alzheimer’s disease neuroimaging initiative: A review of papers published since its inception. Alzheimer’s & Dementia, 11(6), e1–e120.
  • Yu, M., Engels, M. M. A., Hillebrand, A., van Straaten, E. C. W., Gouw, A. A., Teunissen, C., … Stam, C. J. (2017). Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: An MEG-based multiplex network study. Brain, 140(5), 1466–1485.
  • Zhang, Y. Y., Xu, L., Liang, Z. Y., Wang, K., Hou, B., Zhou, Y., … Jiang, T. (2018). Separate neural networks for gains and losses in intertemporal choice. Neuroscience Bulletin, 34(5), 725–735.
  • Zhao, Q., Lu, H., Metmer, H., Li, W. X. Y., & Lu, J. (2018). Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease. Brain Research, 1678, 262–272.
  • Zhao, W., Wang, X., Yin, C., He, M., Li, S., & Han, Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease: A structural imaging study. Frontiers in Neuroinformatics, 13, 13.
  • Zheng, L. J., Yang, G. F., Zhang, X. Y., Wang, Y. F., Liu, Y., Zheng, G., … Han, Y. (2017). Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: A resting-state functional MR imaging study with granger causality analysis. Oncotarget, 8(15), 25021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.