222
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Abnormal functional connectivity in resting state contributes to the weaker emotional sensitivity to reward in depression

, , , &
Pages 640-650 | Received 05 Jun 2022, Accepted 03 Dec 2022, Published online: 22 Dec 2022

References

  • Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. (1996). Comparison of Beck depression inventories -IA and -II in psychiatric outpatients. Journal ofPersonality Assessment, 67(3), 588–597. https://doi.org/10.1207/s15327752jpa6703_13
  • Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck depression inventory-II. TX: Psychological Corporation.
  • Benning, S. D., & Oumeziane, B. A. (2017). Reduced positive emotion and underarousal are uniquely associated with subclinical depressive symptoms: Evidence from psychophysiology, self-report, and symptom clusters. Psychophysiology, 54(7), 1010–1030. https://doi.org/10.1111/psyp.12853
  • Borsini, A., Wallis, A. S. J., Zunszain, P., Pariante, C. M., & Kempton, M. J. (2020). Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cognitive, Affective & Behavioral Neuroscience, 20(4), 816–841. https://doi.org/10.3758/s13415-020-00804-6
  • Brassen, S., Gamer, M., Peters, J., Gluth, S., & Büchel, C. (2012). Don’t look back in anger! Responsiveness to missed chances in successful and nonsuccessful aging. Science, 336(6081), 612–614. https://doi.org/10.1126/science.1217516
  • Chen, J., Huang, P., Yang, G., Liu, Z., Ortega, D., Chen, J., Balu, N., Trouard, T., Hatsukami, T. S., Zhou, W., & Yuan, C. (2021). Functional connectivity between prefrontal lobe and thalamus and its relationship with individual’s craving for internet game: A rs-fMRI study. Chinese Journal of Magnetic Resonance Imaging, 21(4), 45–50. https://doi.org/10.1016/j.mri.2020.10.004
  • Diedenhofen, B., Musch, J., & Olivier, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE, 10(4), e0121945. https://doi.org/10.1371/journal.pone.0121945
  • Engelmann, J. B., Berns, G. S., & Dunlop, B. W. (2017). Hyper-responsivity to Alosses in the anterior insula during economic choice scales with depression severity. Psychological Medicine, 47(16), 2879–2891. https://doi.org/10.1017/S0033291717001428
  • Eshel, N., & Roiser, J. P. (2010). Reward and Punishment Processing in Depression. Biological Psychiatry, 68(2), 118–124. https://doi.org/10.1016/j.biopsych.2010.01.027
  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201
  • Gotlib, I. H., & Hammen, C. L. (2009). Handbook of Depression. Guilford Press.
  • Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences, 99(6), 4115–4120.
  • Greening, S. G., Osuch, E. A., Williamson, P. C., & Mitchell, D. G. (2014). The neural correlates of regulating positive and negative emotions in medication-free major depression. Social Cognitive and Affective Neuroscience, 9(5), 628–637. https://doi.org/10.1093/scan/nst027
  • Haber, S. N., & Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology, 35(1), 4–26. https://doi.org/10.1038/npp.2009.129
  • Heller, A. S., Johnstone, T., Shackman, A. J., Light, S. N., Peterson, M. J., Kolden, G. G., Davidson, R. J. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22445–22450.
  • Hoffmeister, J., Basso, M. R., Reynolds, B., Whiteside, D., Mulligan, R., Arnett, P. A., Combs, D. R. (2021). Effects of diminished positive mood and depressed mood upon verbal learning and memory among people with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 43(2), 117–128. https://doi.org/10.1080/13803395.2020.1853066
  • Huang, P., Gong, Y., Zhang, Z., Li, S., & Liu, Z. (2021). The stronger sensitivity to missed chances in individuals with IGD: A rs-fMRI study. Chinese Journal of Magnetic Resonance Imaging, 12(9), 36–39. https://doi.org/10.12015/issn.1674-8034.2021.09.008
  • Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284–294. https://doi.org/10.1016/j.neuron.2008.03.020
  • Jeffrey, B. H., & Richard, J. D. (2000). Decreased responsiveness to reward in depression. Cognition & Emotion, 14(5), 711–724. https://doi.org/10.1080/02699930050117684
  • Kaldewaij, R., Koch, S. B., Hashemi, M. M., Zhang, W., Klumpers, F., & Roelofs, K. (2021). Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nature Human Behaviour, 5(8), 1055–1064. https://doi.org/10.1038/s41562-021-01055-2
  • Kerestes, R., Harrison, B. J., Dandash, O., Stephanou, K., Whittle, S., Pujol, J., … Davey, C. G. (2015). Specific functional connectivity alterations of the dorsal striatum in young people with depression. NeuroImage: Clinical, 7(1), 266–272. https://doi.org/10.1016/j.nicl.2014.12.017
  • Klawohn, J., Burani, K., Bruchnak, A., Santopetro, N., & Hajcak, G. (2021). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 51(5), 741–749. https://doi.org/10.1017/S0033291719003659
  • Kung, S., Alarcon, R. D., Williams, M., Poppe, K. A., Moore, M. J., & Frye, M. A. (2013). Comparing the beck DEPRESSION INVENTORY-II (BDI-II) and patient health questionnaire (PHQ-9) depression measures in an integrated mood disorders practice. Journal of Affective Disorders, 145(3), 341–343. https://doi.org/10.1016/j.jad.2012.08.017
  • Li, S., Liu, Z., Che, L., Gong, Y., Liu, S., & Guo, X. (2022). The neural mechanisms underlying the modulation of attentional deployment on emotional stability. Experimental Brain Research. 1–10. https://doi.org/10.1007/s00221-022-06361-3
  • Li, S., Liu, S., Huang, P., Liu, S., Zhang, W., Guo, X., Liu, S., Liu, S., & Liu, Z. (2021). The modulation of attentional deployment on regret: An event-related potential study. NeuroReport, 32(7), 621–630. https://doi.org/10.1097/WNR.0000000000001640
  • Liu, Z., Huang, P., Gong, Y., Wang, Y., Wu, Y., Wang, C., & Guo, X. (2022b). Altered neural responses to missed chance contribute to the risk‐taking behaviour in individuals with Internet gaming disorder. Addiction Biology, 27(2), e13124. https://doi.org/10.1111/adb.13124
  • Liu, Z., Li, L., Liu, S., Sun, Y., Li, S., Yi, M., Zheng, L., & Guo, X. (2020). Reduced feelings of regret and enhanced fronto-striatal connectivity in elders with long-term Tai Chi experience. Social Cognition and Affective Neuroscience, 15(8), 861–873. https://doi.org/10.1093/scan/nsaa111
  • Liu, Z., Liu, S., Li, S., Li, L., Zheng, L., Weng, X., Guo, X., Lu, Y., Men, W., Gao, J., & You, X. (2022a). Dissociating Value-Based Neurocomputation from Subsequent Selection-Related Activations in Human Decision-Making. Cerebral Cortex, 32(19), 4141–4155. https://doi.org/10.1093/cercor/bhab471
  • Liu, Z., Li, L., Zheng, L., Hu, Z., Roberts, I. D., Guo, X., … Yang, G. (2016). The neural basis of regret and relief during a sequential risk-taking task. Neuroscience, 327, 136–145. https://doi.org/10.1016/j.neuroscience.2016.04.018
  • Liu, Z., Wu, Y., Li, L., & Guo, X. (2018a). Functional Connectivity Within the Executive Control Network Mediates the Effects of Long-Term Tai Chi Exercise on Elders’ Emotion Regulation. Frontiers in Aging Neuroscience, 10: 315, 1–12. https://doi.org/10.3389/fnagi.2018.00315
  • Liu, S., Yang, L., Li, S., Huang, P., Li, L., Liu, S., Zhang, W., Liu, Z., & Guo, X. (2022). Resting-state functional connectivity within orbitofrontal cortex and inferior frontal gyrus modulates the relationship between reflection level and risk-taking behavior in internet gaming disorder. Brain Research Bulletin, 178, 49–56. https://doi.org/10.1016/j.brainresbull.2021.10.019
  • Liu, Z., Zheng, L., Li, L., Xu, J., Cheng, X., Guo, X., Mulcahy, J., & Xu, M. (2018b). Social comparison modulates the neural responses to regret and subsequent risk-taking behavior. Social Cognitive and Affective Neuroscience, 13(10), 1059–1070. https://doi.org/10.1093/scan/nsy066
  • Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., & Xu, G. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 8, 1–10. https://doi.org/10.1016/S2215-0366(20)30532-0
  • Mathers, C. D., Loncar, D., & Samet, J. (2006). Projections of global mortality and burden of disease from 2002 to 2030. Plos Medicine, 3(11), 2011–2030. https://doi.org/10.1371/journal.pmed.0030442
  • Mcfarland, B. R., & Klein, D. N. (2009). Emotional reactivity in depression: Diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depression and Anxiety, 26(2), 117–122. https://doi.org/10.1002/da.20513
  • Morgan, J. K., Eckstrand, K. L., Silk, J. S., Olino, T. M., Ladouceur, C. D., & Forbes, E. E. (2022). Maternal Response to Positive Affect Moderates the Impact of Familial Risk for Depression on Ventral Striatal Response to Winning Reward in 6- to 8-Year-Old Children. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(8), 824–832. https://doi.org/10.1016/j.bpsc.2021.12.014
  • Nelson, B. D., Kessel, E. M., Klein, D. N., & Shankman, S. A. (2017). Depressive symptoms dimensions and asymmetrical frontal cortical activity while anticipating reward. Psychopathology, 55(1), e12892. https://doi.org/10.1111/psyp.12892
  • Nielson, D. M., Keren, H., O’Callaghan, G., Jackson, S. M., Douka, I., Vidal-Ribas, P., … Stringaris, A. (2021). Great expectations: A critical review of and suggestions for the study of reward processing as a cause and predictor of depression. Biological Psychiatry, 89(2), 134–143. https://doi.org/10.1016/j.biopsych.2020.06.012
  • Perin, S., Lai, J., Pase, M., Bransbu, L., Buckley, R., Yassi, N., … Lim, Y. (2022). Elucidating the association between depression, anxiety, and cognition in middle-aged adults: Application of dimensional and categorical approaches. Journal of Affective Disorders, 296, 559–566. https://doi.org/10.1016/j.jad.2021.10.007
  • Pizzagalli, D. A., & Roberts, A. C. (2022). Prefrontal cortex and depression. Neuropsychopharmacology, 47, 225–246. https://doi.org/10.1038/s41386-021-01101-7
  • Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521. https://doi.org/10.1093/cercor/bhj088
  • Quevedo, K., Ng, R., Scott, H., Kodavaganti, S. S., Diwadkar, G., & Phillips, M. (2017). Ventral striatum functional connectivity during rewards and losses and symptomatology in depressed patients. Biological Psychology, 123, 62–73. https://doi.org/10.1016/j.biopsycho.2016.11.004
  • Rolls, E. T., Cheng, W., Du, J., Wei, D., Qiu, J., Dai, D., … Feng, J. (2020). Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression. Social Cognitive and Affective Neuroscience, 15(1), 75–86. https://doi.org/10.1093/scan/nsaa014
  • Rolls, & Edmund, T. (2016). A non-reward attractor theory of depression. Neuroscience and Biobehavioral Reviews, 68, 47–57. https://doi.org/10.1016/j.neubiorev.2016.05.007
  • Shen, H. H. (2015). Core Concept: Resting-state connectivity. Proceedings of the National Academy of Sciences, 112(46), 14115–14116.
  • Slobodskoy-Plusnin, J. (2018). Behavioral and brain oscillatory correlates of affective processing in subclinical depression. Journal of Clinical and Experimental Neuropsychology, 40(5), 437–448. https://doi.org/10.1080/13803395.2017.1371281
  • Smoski, M. J., Felder, J., Bizzell, J., Green, S. R., Ernst, M., Lynch, T. R., … Dichter, G. S. (2009). fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. Journal of Affective Disorders, 118(1–3), 69–78. https://doi.org/10.1016/j.jad.2009.01.034
  • Terasawa, Y., Fukushima, H., & Umeda, S. (2013). How does interoceptive awareness interact with the subjective experience of emotion? An fMRI Study. Human Brain Mapping, 34(3), 598–612. https://doi.org/10.1002/hbm.21458
  • Wang, L., Li, F., Mitchell, P. B., Wang, C. Y., & Si, T. M. (2020). Striatal resting-state connectivity abnormalities associated with different clinical stages of major depressive disorder. The Journal of Clinical Psychiatry, 81(2), 42–65. https://doi.org/10.4088/JCP.19m12790
  • Yang, J., Liu, Z., Liu, S., Li, L., Zheng, L., & Guo, X. (2019). The emotional stability of elders with tai chi experience in the sequential risk‐taking task. PsyCh Journal, 8(4), 491–502. https://doi.org/10.1002/pchj.279
  • Zhang, Z., Huang, P., Li, S., Liu, Z., Zhang, J., & Liu, Z. (2022b). Neural mechanisms underlying the processing of emotional stimuli in individuals with depression: An ALE meta-analysis study. Psychiatry Research, 114598. https://doi.org/10.1016/j.psychres.2022.114598
  • Zhang, Z., Li, S., Huang, P., Liu, Z., Li, S., Zhang, J., & Liu, Z. (2022a). The modulation of attentional deployment on emotional sensitivity to missed opportunity in depressive individuals: An event-related potential study. Journal of Affective Disorders, 317, 29–36. https://doi.org/10.1016/j.jad.2022.08.077
  • Zhang, D., Shen, J., Bi, R., Zhang, Y., & Gu, R. (2020). Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms. Psychological Medicine, 1–15. https://doi.org/10.1017/S0033291720003967
  • Zheng, Y., Xu, J., Zheng, L., Li, L., Yang, G., & Guo, X. (2017). The effect of economic status on responses to unfairness: A rs-fMRI study. Chinese Journal of Magnetic Resonance Imaging, 8(8), 598–603. https://doi.org/10.12015/issn.1674-8034.2017.08.008
  • Zhu, J., Zhang, Y., Zhang, B., Yang, Y., Wang, Y., Zhang, C., & Yu, Y. (2019). Abnormal coupling among spontaneous brain activity metrics and cognitive deficits in major depressive disorder. Journal of Affective Disorders, 252, 74–83. https://doi.org/10.1016/j.jad.2019.04.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.