289
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sport expertise and physical exercise are associated with “hot” executive functioning: An electrophysiological examination of reward processing in collegiate athletes

, , ORCID Icon & ORCID Icon
Pages 182-196 | Received 12 Jun 2022, Accepted 18 May 2023, Published online: 06 Jun 2023

References

  • Akarsu, S., Çalişkan, E., & Dane, Ş. (2009). Athletes have faster eye-hand visual reaction times and higher scores on visuospatial intelligence than nonathletes. Turkish Journal of Medical Sciences, 39(6), 871–874. https://doi.org/10.3906/sag-0809-44
  • Baker, T. E., & Holroyd, C. B. (2009). Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze. Cerebral Cortex, 19(8), 1708–1722. https://doi.org/10.1093/cercor/bhn223
  • Baker, T. E., & Holroyd, C. B. (2011). Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200. Biological Psychology, 87(1), 25–34. https://doi.org/10.1016/j.biopsycho.2011.01.010
  • Baker, T. E., Stockwell, T., Barnes, G., & Holroyd, C. B. (2011). Individual differences in substance dependence: At the intersection of brain, behaviour and cognition. Addiction Biology, 16(3), 458–466. https://doi.org/10.1111/j.1369-1600.2010.00243.x
  • Baker, T. E., Wood, J. M., & Holroyd, C. B. (2016). Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology, 127(2), 1358–1365. https://doi.org/10.1016/j.clinph.2015.11.002
  • Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology. Human Perception and Performance, 35(2), 565–574. https://doi.org/10.1037/a0012735
  • Brümmer, V., Schneider, S., Abel, T., Vogt, T., & Strüder, H. K. (2011). Brain cortical activity is influenced by exercise mode and intensity. Medicine and Science in Sports and Exercise, 43(10), 1863–1872. https://doi.org/10.1249/MSS.0b013e3182172a6f
  • Brush, C. J., Foti, D., Bocchine, A. J., Muniz, K. M., Gooden, M. J., Spaeth, A. M., & Alderman, B. L. (2020). Aerobic exercise enhances positive emotional reactivity in individuals with depressive symptoms: Evidence from neural responses to reward and emotional content. Mental Health and Physical Activity, 19, 100339. https://doi.org/10.1016/j.mhpa.2020.100339
  • Burkhouse, K. L., Kujawa, A., Kennedy, A. E., Shankman, S. A., Langenecker, S. A., Phan, K. L., & Klumpp, H. (2016). Neural reactivity to reward as a predictor of cognitive behavioral therapy response in anxiety and depression. Depression and Anxiety, 33(4), 281–288. https://doi.org/10.1002/da.22482
  • Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., & Forman, S. D. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9(6), 835–847. https://doi.org/10.1162/jocn.1997.9.6.835
  • Chan, S. Y., Ong, Z. Y., Ngoh, Z. M., Chong, Y. S., Zhou, J. H., Fortier, M. V., & Tan, A. P. (2022). Structure-function coupling within the reward network in preschool children predicts executive functioning in later childhood. Developmental Cognitive Neuroscience, 55, 101107. https://doi.org/10.1016/j.dcn.2022.101107
  • Chan, J. S., Wong, A. C., Liu, Y., Yu, J., & Yan, J. H. (2011). Fencing expertise and physical fitness enhance action inhibition. Psychology of Sport and Exercise, 12(5), 509–514. https://doi.org/10.1016/j.psychsport.2011.04.006
  • Chen, J., Li, Y., Zhang, G., Jin, X., Lu, Y., & Zhou, C. (2019). Enhanced inhibitory control during re-engagement processing in badminton athletes: An event-related potential study. Journal of Sport and Health Science, 8(6), 585–594. https://doi.org/10.1016/j.jshs.2019.05.005
  • Chueh, T. Y., Huang, C. J., Hsieh, S. S., Chen, K. F., Chang, Y. K., & Hung, T. M. (2017). Sports training enhances visuo-spatial cognition regardless of open-closed typology. PeerJ, 5, e3336. https://doi.org/10.7717/peerj.3336
  • Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute exercise and neurocognitive development in preadolescents and young adults: An ERP study. Neural Plasticity, 2017. https://doi.org/10.1155/2017/2631909
  • Clark, A. M. (2012). Reward processing: A global brain phenomenon? Journal of Neurophysiology, 109(1), 1–4. https://doi.org/10.1152/jn.00070.2012
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Di Russo, F., & Spinelli, D. (2010). Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology, 47(3), 425–434. https://doi.org/10.1111/j.1469-8986.2009.00950.x
  • Dubois, B., & Pillon, B. (1996). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244(1), 2–8. https://doi.org/10.1007/PL00007725
  • Giel, K. E., Kullmann, S., Preißl, H., Bischoff, S. C., Thiel, A., Schmidt, U., & Teufel, M. (2013). Understanding the reward system functioning in anorexia nervosa: Crucial role of physical activity. Biological Psychology, 94(3), 575–581. https://doi.org/10.1016/j.biopsycho.2013.10.004
  • Gill, D. L., & Dzewaltowski, D. A. (1988). Competitive orientations among intercollegiate athletes: Is winning the only thing? The Sport Psychologist, 2(3), 212–221. https://doi.org/10.1123/tsp.2.3.212
  • Gioia, G. A., Isquith, P. K., Kenworthy, L., & Barton, R. M. (2002). Profiles of everyday executive function in acquired and developmental disorders. Child Neuropsychology, 8(2), 121–137. https://doi.org/10.1076/chin.8.2.121.8727
  • Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. https://doi.org/10.1016/0013-4694(83)90135-9
  • Gruber, S. A., Sagar, K. A., Dahlgren, M. K., Racine, M., & Lukas, S. E. (2012). Age of onset of marijuana use and executive function. Psychology of Addictive Behaviors, 26(3), 496–506. https://doi.org/10.1037/a0026269
  • Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20(1), 73–86. https://doi.org/10.3758/s13423-012-0345-4
  • Gunnerud, H. L., ten Braak, D., Reikerås, E. K. L., Donolato, E., & Melby-Lervåg, M. (2020). Is bilingualism related to a cognitive advantage in children? A systematic review and meta-analysis. Psychological Bulletin, 146(12), 1059–1083. https://doi.org/10.1037/bul0000301
  • Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G., Holroyd, C. B., & Miltner, W. H. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67(8), 781–783. https://doi.org/10.1016/j.biopsych.2009.11.009
  • Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129. https://doi.org/10.1037/a0014437
  • Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967–1974. https://doi.org/10.1249/01.mss.0000176680.79702.ce
  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews. Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298
  • Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709. https://doi.org/10.1037/0033-295X.109.4.679
  • Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913–917. https://doi.org/10.1111/j.1469-8986.2007.00561.x
  • Holroyd, C. B., Pakzad‐Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct‐related positivity: Sensitivity of the event‐related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688–697. https://doi.org/10.1111/j.1469-8986.2008.00668.x
  • Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122–128. https://doi.org/10.1016/j.tics.2011.12.008
  • JASP Team. (2019). JASP (0.10.2) [Computer software]. https://jasp-stats.org/
  • Karr, J. E., Areshenkoff, C. N., & Garcia-Barrera, M. A. (2014). The neuropsychological outcomes of concussion: A systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3), 321–336. https://doi.org/10.1037/neu0000037
  • Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 1147–1185. https://doi.org/10.1037/bul0000160
  • Kohls, G., Peltzer, J., Herpertz‐Dahlmann, B., & Konrad, K. (2009). Differential effects of social and non‐social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614–625. https://doi.org/10.1111/j.1467-7687.2009.00816.x
  • Kumar, A., & Vishal. (2013). Visual response time and visuospatial intelligence scores of athletes and nonathletes. Journal of Exercise Science and Physiotherapy, 9(2), 125–128. https://doi.org/10.18376//2013/v9i2/67565
  • Künig, G., Leenders, K. L., Martin-Sölch, C., Missimer, J., Magyar, S., & Schultz, W. (2000). Reduced reward processing in the brains of Parkinsonian patients. Neuroreport, 11(17), 3681–3687.
  • Larson, M. J., & Carbine, K. A. (2017). Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor. International Journal of Psychophysiology, 111, 33–41. https://doi.org/10.1016/j.ijpsycho.2016.06.015
  • Lertladaluck, K., Chutabhakdikul, N., Chevalier, N., & Moriguchi, Y. (2020). Effects of social and nonsocial reward on executive function in preschoolers. Brain and Behavior, 10(9), e01763. https://doi.org/10.1002/brb3.1763
  • Lohse, K., Miller, M., Bacelar, M., & Krigolson, O. (2019). Errors, rewards, and reinforcement in motor skill learning. In N. J. Hodges & A. M. Williams (Eds.), Skill Acquisition in Sport (pp. 39–60). Routledge. https://doi.org/10.4324/9781351189750
  • Mallett, C. J., & Hanrahan, S. J. (2004). Elite athletes: Why does the ‘fire’ burn so brightly? Psychology of Sport and Exercise, 5(2), 183–200. https://doi.org/10.1016/S1469-0292(02)00043-2
  • Masaki, H., Maruo, Y., Meyer, A., & Hajcak, G. (2017). Neural correlates of choking under pressure: Athletes high in sports anxiety monitor errors more when performance is being evaluated. Developmental Neuropsychology, 42(2), 104–112. https://doi.org/10.1080/87565641.2016.1274314
  • McDuff, D., Stull, T., Castaldelli-Maia, J. M., Hitchcock, M. E., Hainline, B., & Reardon, C. L. (2019). Recreational and ergogenic substance use and substance use disorders in elite athletes: A narrative review. British Journal of Sports Medicine, 53(12), 754–760. https://doi.org/10.1136/bjsports-2019-100669
  • Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788–798. https://doi.org/10.1162/jocn.1997.9.6.788
  • Moore, W. R. (2012). A neurophysiological marker of anticipation and error monitoring in developmental stuttering [ Published master’s thesis]. University of Victoria. https://dspace.library.uvic.ca/handle/1828/4310
  • Ottowitz, W. E., Tondo, L., Dougherty, D. D., & Savage, C. R. (2002). The neural network basis for abnormalities of attention and executive function in major depressive disorder: Implications for application of the medical disease model to psychiatric disorders. Harvard Review of Psychiatry, 10(2), 86–99. https://doi.org/10.1080/10673220216210
  • Padilla, C., Pérez, L., & Andres, P. (2014). Chronic exercise keeps working memory and inhibitory capacities fit. Frontiers in Behavioral Neuroscience, 8, 1–10. https://doi.org/10.3389/fnbeh.2014.00049
  • Padilla, C., Perez, L., Andres, P., & Parmentier, F. B. R. (2013). Exercise improves cognitive control: Evidence from the Stop Signal Task. Applied Cognitive Psychology, 27(4), 505–511. https://doi.org/10.1002/acp.2929
  • Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147–154. https://doi.org/10.7150/ijms.2.147
  • Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: A review of 107 PET activation studies. Neuroreport, 9(9), R37–R47. https://doi.org/10.1097/00001756-199806220-00001
  • Polich, J., Ladish, C., & Burns, T. (1990). Normal variation of P300 in children: Age, memory span, and head size. International Journal of Psychophysiology, 9(3), 237–248. https://doi.org/10.1016/0167-8760(90)90056-j
  • Polich, J., & Lardon, M. T. (1997). P300 and long-term physical exercise. Electroencephalography and Clinical Neurophysiology, 103(4), 493–498. https://doi.org/10.1016/s0013-4694(97)96033-8
  • Porter, S., Silverberg, N. D., & Virji-Babul, N. (2019). Cortical activity and network organization underlying physical and cognitive exertion in active young adult athletes: Implications for concussion. Journal of Science and Medicine in Sport, 22(4), 397–402. https://doi.org/10.1016/j.jsams.2018.09.233
  • Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449–459. https://doi.org/10.1111/psyp.12370
  • Qu, L., Finestone, D. L., Qin, L. J., & Reena, L. Z. (2013). Focused but fixed: The impact of expectation of external rewards on inhibitory control and flexibility in preschoolers. Emotion, 13(3), 562–572. https://doi.org/10.1037/a0027263
  • Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., & Robbins, T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19(20), 9029–9038. https://doi.org/10.1523/JNEUROSCI.19-20-09029.1999
  • Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020
  • Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychological Bulletin, 141(1), 213–235. https://doi.org/10.1037/bul0000006
  • Samuel, S., Roehr‐Brackin, K., Pak, H., & Kim, H. (2018). Cultural effects rather than a bilingual advantage in cognition: A review and an empirical study. Cognitive Science, 42(7), 2313–2341. https://doi.org/10.1111/cogs.12672
  • Sanchez-Lopez, J., Silva-Pereyra, J., & Fernandez, T. (2016). Sustained attention in skilled and novice martial arts athletes: A study of event-related potentials and current sources. PeerJ, 4, e1614. https://doi.org/10.7717/peerj.1614
  • Sato, T., Kosaki, K., Choi, Y., Tochigi, Y., Shindo-Hamasaki, A., Momma, R., & Maeda, S. (2022). Association between sport types and visuospatial working memory in athletes. The Journal of Physical Fitness and Sports Medicine, 11(4), 247–253. https://doi.org/10.7600/jpfsm.11.247
  • Schneider, S., Askew, C. D., Abel, T., Mierau, A., & Strüder, H. K. (2010). Brain and exercise: A first approach using electrotomography. Medicine and Science in Sports and Exercise, 42(3), 600–607. https://doi.org/10.1249/mss.0b013e3181b76ac8
  • Schott, B. H., Niehaus, L., Wittmann, B. C., Schütze, H., Seidenbecher, C. I., Heinze, H. J., & Düzel, E. (2007). Ageing and early-stage Parkinson’s disease affect separable neural mechanisms of mesolimbic reward processing. Brain, 130(9), 2412–2424. https://doi.org/10.1093/brain/awm147
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593
  • Sharma, V. K., Subramanian, S. K., & Rajendran, R. (2019). Comparison of cognitive auditory event related potentials and executive functions in adolescent athletes and non-athletes—A cross sectional study. International Journal of Physiology, Pathophysiology and Pharmacology, 11(6), 274–282.
  • Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291. https://doi.org/10.1038/nn.4384
  • Shephard, R. (1997). Godin leisure-time exercise questionnaire. Medicine and Science in Sports and Exercise, 29(6), S36–S38. https://doi.org/10.14288/hfjc.v4i1.82
  • Simons, D. J., Shoda, Y., & Lindsay, D. S. (2017). Constraints on generality (COG): A proposed addition to all empirical papers. Perspectives on Psychological Science, 12(6), 1123–1128. https://doi.org/10.1177/1745691617708630
  • Ströhle, A., Stoy, M., Wrase, J., Schwarzer, S., Schlagenhauf, F., Huss, M., & Juckel, G. (2008). Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. Neuroimage, 39(3), 966–972. https://doi.org/10.1016/j.neuroimage.2007.09.044
  • Swann, C., Moran, A., & Piggott, D. (2015). Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychology of Sport and Exercise, 16, 3–14. https://doi.org/10.1016/j.psychsport.2014.07.004
  • Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., & Haber, S. N. (2019). A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. Elife, 8, e43761. https://doi.org/10.7554/eLife.43761
  • Tarullo, A. R., Nayak, S., John, A. M., & Doan, S. N. (2018). Performance effects of reward-related feedback on the dimensional change card sort task. The Journal of Genetic Psychology, 179(4), 171–175. https://doi.org/10.1080/00221325.2018.1466264
  • Taylor, S. F., Welsh, R. C., Wager, T. D., Phan, K. L., Fitzgerald, K. D., & Gehring, W. J. (2004). A functional neuroimaging study of motivation and executive function. Neuroimage, 21(3), 1045–1054. https://doi.org/10.1016/j.neuroimage.2003.10.032
  • Themanson, J. R., Pontifex, M. B., & Hillman, C. H. (2008). Fitness and action monitoring: Evidence for improved cognitive flexibility in young adults. Neuroscience, 157(2), 319–328. https://doi.org/10.1016/j.neuroscience.2008.09.014
  • Tomporowski, P. D., & Pesce, C. (2019). Exercise, sports, and performance arts benefit cognition via a common process. Psychological Bulletin, 145(9), 929–951. https://doi.org/10.1037/bul0000200
  • Tripp, G., & Alsop, B. (1999). Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. Journal of Clinical Child Psychology, 28(3), 366–375. https://doi.org/10.1207/S15374424jccp280309
  • Tsai, C.-L., Wang, C.-H., Pan, C.-Y., Chen, F.-C., Huang, T.-H., & Chou, F.-Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience, 8, 1–12. https://doi.org/10.3389/fnbeh.2014.00262
  • Van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: FMRI and ERP studies. Physiology & Behavior, 77(4–5), 477–482. https://doi.org/10.1016/S0031-9384(02)00930-7
  • Verburgh, L., Königs, M., Scherder, E. J. A., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. British Journal of Sports Medicine, 48(12), 973–979. https://doi.org/10.1136/bjsports-2012-091441
  • Voss, M. W., Kramer, A. F., Basak, C., Prakash, R. S., & Roberts, B. (2010). Are expert athletes ‘expert’in the cognitive laboratory? A meta‐analytic review of cognition and sport expertise. Applied Cognitive Psychology, 24(6), 812–826. https://doi.org/10.1002/acp.1588
  • Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111(5), 1505–1513. https://doi.org/10.1152/japplphysiol.00210.2011
  • Walsh, A. T., Carmel, D., & Grimshaw, G. M. (2019). Reward elicits cognitive control over emotional distraction: Evidence from pupillometry. Cognitive, Affective & Behavioral Neuroscience, 19, 537–554. https://doi.org/10.3758/s13415-018-00669-w
  • Walsh, A. T., Carmel, D., Harper, D., & Grimshaw, G. M. (2018). Motivation enhances control of positive and negative emotional distractions. Psychonomic Bulletin & Review, 25, 1556–1562. https://doi.org/10.3758/s13423-017-1414–5
  • Weinberg, R. S., & Jackson, A. (1979). Competition and extrinsic rewards: Effect on intrinsic motivation and attribution. Research Quarterly. American Alliance for Health, Physical Education, Recreation and Dance, 50(3), 494–502. https://doi.org/10.1080/00345377.1979.10615636
  • Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nature Reviews. Neuroscience, 10(8), 585–596. https://doi.org/10.1038/nrn2672
  • Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354–360. https://doi.org/10.1111/j.1750-8606.2012.00246.x
  • Zelazo, P. D., & Cunningham, W. A. (2007). Executive Function: Mechanisms Underlying Emotion Regulation. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 135–158). The Guilford Press.
  • Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In U. Goswami, Ed. Blackwell handbook of childhood cognitive development (pp. 445–469). Blackwell Publishers Ltd. https://doi.org/10.1002/9780470996652.ch20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.