203
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Neurocognitive assessment in microgravity: review of tools and benefits of increasing their clinical validity for long duration missions

&
Pages 270-291 | Received 07 Feb 2023, Accepted 07 Jun 2023, Published online: 26 Jun 2023

References

  • Barisano, G., Sepehrband, F., Collins, H. R., Jillings, S., Jeurissen, B., Taylor, J. A., Schoenmaekers, C., De Laet, C., Rukavishnikov, I., Nosikova, I., Litvinova, L., Rumshiskaya, A., Annen, J., Sijbers, J., Laureys, S., Van Ombergen, A., Petrovichev, V., Sinitsyn, V., Pechenkova, E., … Wuyts, F. L. (2022). The effect of prolonged spaceflight on cerebrospinal fluid and perivascular spaces of astronauts and cosmonauts. Proceedings of the National Academy of Sciences, 119(17), e2120439119. https://doi.org/10.1073/pnas.2120439119
  • Barzilay, R., Calkins, M. E., Moore, T. M., Boyd, R. C., Jones, J. D., Benton, T. D., Oquendo M. A., Gur R. C., & Gur, R. E. (2019). Neurocognitive functioning in community youth with suicidal ideation: Gender and pubertal effects. The British Journal of Psychiatry, 215(3), 552–558. https://doi.org/10.1192/bjp.2019.55
  • Basner, M., Dinges, D. F., Howard, K., Moore, T. M., Gur, R. C., Mühl, C., & Stahn, A. C. (2021). Continuous and intermittent artificial gravity as a countermeasure to the cognitive effects of 60 days of head-down tilt bed rest. Frontiers in Physiology, 12, 280. https://doi.org/10.3389/fphys.2021.643854
  • Basner, M., Savitt, A., Moore, T. M., Port, A. M., McGuire, S., Ecker, A. J., Nasrini, J., Mollicone, D. J., Mott, C. M., McCann, T., Dinges, D. F., & Gur, R. C. (2015). Development and validation of the cognition test battery for spaceflight. Aerospace Medicine and Human Performance, 86(11), 942–952. https://doi.org/10.3357/AMHP.4343.2015
  • Basner, M., Stahn, A. C., Nasrini, J., Dinges, D. F., Moore, T. M., Gur, R. C., Mühl, C., Macias, B. R., & Laurie, S. S. (2021). Effects of head-down tilt bed rest plus elevated CO2 on cognitive performance. Journal of Applied Physiology, 130(4), 1235–1246. https://doi.org/10.1152/japplphysiol.00865.2020
  • Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 7–15. https://doi.org/10.1016/0010-0277(94)90018-3
  • Benke, T., Koserenko, O., Watson, N. V., & Gerstenbrand, F. (1993). Space and cognition: The measurement of behavioral functions during a 6-day space mission. Aviation, Space, and Environmental Medicine, 64(5), 376–379.
  • Blaber, A. P., Goswami, N., Bondar, R. L., & Kassam, M. S. (2011). Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke, 42(7), 1844–1850. https://doi.org/10.1161/STROKEAHA.110.610576
  • Bock, O., Fowler, B., & Comfort, D. (2001). Human sensorimotor coordination during spaceflight: An analysis of pointing and tracking responses during the “Neurolab” space shuttle mission. Aviation, Space, and Environmental Medicine, 72(10), 877–883.
  • Buysse, D. J., Reynolds, C. F., III, Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. https://doi.org/10.1016/0165-1781(89)90047-4
  • Casario, K., Howard, K., Cordoza, M., Hermosillo, E., Ibrahim, L., Larson, O., Nasrini, J., & Basner, M. (2022). Acceptability of the cognition test battery in astronaut and astronaut-surrogate populations. Acta Astronautica, 190, 14–23. https://doi.org/10.1016/j.actaastro.2021.09.035
  • Caston, R., Luc, K., Hendrix, D., Hurowitz, J. A., & Demple, B. (2018). Assessing toxicity and nuclear and mitochondrial DNA damage caused by exposure of mammalian cells to lunar regolith simulants. GeoHealth, 2(4), 139–148. https://doi.org/10.1002/2017GH000125
  • Clarà, P. C., Jerez, F. R., Ramírez, J. B., & González, C. M. (2023). Deposition and clinical impact of inhaled particles in the lung. Archivos de Bronconeumología, 59(6), 377–382. https://doi.org/10.1016/j.arbres.2023.01.016
  • Clement, G., Berthoz, A., & Lestienne, F. (1987). Adaptive changes in perception of body orientation and mental image rotation in microgravity. Aviation, Space, and Environmental Medicine, 58(9 Pt 2), A159–63.
  • Clément, G. R., Boyle, R. D., George, K. A., Nelson, G. A., Reschke, M. F., Williams, T. J., & Paloski, W. H. (2020). Challenges to the central nervous system during human spaceflight missions to Mars. Journal of Neurophysiology, 123(5), 2037–2063. https://doi.org/10.1152/jn.00476.2019
  • Curtis, S. B., Vazquez, M. E., Wilson, J. W., Atwell, W., Kim, M., & Capala, J. (1998). Cosmic ray hit frequencies in critical sites in the central nervous system. Advances in Space Research, 22(2), 197–207. https://doi.org/10.1016/S0273-1177(98)80011-2
  • De la Torre, G. G. (2014). Cognitive neuroscience in space. Life, 4(3), 281–294. https://doi.org/10.3390/life4030281
  • De la Torre, G. G., Navas, J. M. M., & Bozal, R. G. (2014). Neurocognitive performance using the windows spaceflight cognitive assessment tool (WinSCAT) in human spaceflight simulations. Aerospace Science and Technology, 35, 87–92. https://doi.org/10.1016/j.ast.2014.02.006
  • De la Torre, G., van Baarsen, B., Ferlazzo, F., Kanas, N., Weiss, K., Schneider, S., & Whiteley, I. (2012). Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight. Acta Astronautica, 81(2), 587–599. https://doi.org/10.1016/j.actaastro.2012.08.013
  • De la Torre, G., van Baarsen, B., Ferlazzo, F., Kanas, N., Weiss, K., Schneider, S., & Whiteley, I. (2012). Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight. Acta astronautica, 81(2), 587–599.
  • Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K., & Ghosh, P. (2016). Apollo lunar astronauts show higher cardiovascular disease mortality: Possible deep space radiation effects on the vascular endothelium. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep29901
  • de Schonen, S., Leone, G., & Lipshits, M. (1998). The face inversion effect in microgravity: Is gravity used as a spatial reference for complex object recognition? Acta Astronautica, 42(1–8), 287–301. https://doi.org/10.1016/S0094-5765(98)00126-X
  • Desmond, D. W. (2004). The neuropsychology of vascular cognitive impairment: Is there a specific cognitive deficit? Journal of the Neurological Sciences, 226(1–2), 3–7. https://doi.org/10.1016/j.jns.2004.09.002
  • Di Carli, M. F., & Hachamovitch, R. (2007). New technology for noninvasive evaluation of coronary artery disease. Circulation, 115(11), 1464–1480. https://doi.org/10.1161/CIRCULATIONAHA.106.629808
  • Dijk, D. J., Neri, D. F., Wyatt, J. K., Ronda, J. M., Riel, E., Ritz-De Cecco, A., Hughes, R. J., Elliott, A. R., Prisk, G. K., West, J. B., & Czeisler, C. A. (2001). Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(5), R1647–R1664. https://doi.org/10.1152/ajpregu.2001.281.5.R1647
  • Draycott, S. G., & Kline, P. (1996). Validation of the AGARD STRES battery of performance tests. Human Factors, 38(2), 347–361. https://doi.org/10.1177/001872089606380214
  • Eddy, D., Schiflett, S., Schlegel, R., & Shehab, R. (1998). Cognitive performance aboard the life and microgravity spacelab. Acta Astronautica, 43(3–6), 193–210. https://doi.org/10.1016/S0094-5765(98)00154-4
  • Filippini, C., DiCrosta, A., Palumbo, R., Perpetuini, D., Cardone, D., Ceccato, I., & Merla, A. (2022). Automated affective computing based on bio-signals analysis and deep learning approach. Sensors, 22(5), 1789.
  • Fowler, B., Bock, O., & Comfort, D. (2000). A review of cognitive and perceptual-motor performance in space. Aviation, Space, and Environmental Medicine, 71(9 Suppl), A66–A68.
  • Frank, N. (2022). Mutiny aboard Skylab 4—the stress of living in space. Humanities, 85(10).
  • French, J., Neville, K. J., Eddy, D., Storm, W., & Flynn, C. (1999). Sensitivity of SCAT to sleep deprivation: NASA technical report. Limited Distribution.
  • Garcia-Alvarez, L., Gomar, J. J., Sousa, A., Garcia-Portilla, M. P., & Goldberg, T. E. (2019). Breadth and depth of working memory and executive function compromises in mild cognitive impairment and their relationships to frontal lobe morphometry and functional competence. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 170–179. https://doi.org/10.1016/j.dadm.2018.12.010
  • Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J. and Piening, B. D., & Turek, F. W. (2019). The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436), eaau8650. https://doi.org/10.1126/science.aau8650
  • Gatti, M., Palumbo, R., Di Domenico, A., & Mammarella, N. (2022). Affective health and countermeasures in long-duration space exploration. Heliyon, 8(5), e09414. https://doi.org/10.1016/j.heliyon.2022.e09414
  • Greene-Schloesser, D., & Robbins, M. E. (2012). Radiation-induced cognitive impairment-from bench to bedside. Neuro-oncology, 14(suppl_4), iv37–iv44. https://doi.org/10.1093/neuonc/nos196
  • Gur, R. C., Richard, J., Hughett, P., Calkins, M. E., Macy, L., Bilker, W. B., Brensinger, C., & Gur, R. E. (2010). A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. Journal of Neuroscience Methods, 187(2), 254–262. https://doi.org/10.1016/j.jneumeth.2009.11.017
  • Harvey, L. A., & Close, J. C. (2012). Traumatic brain injury in older adults: Characteristics, causes and consequences. Injury, 43(11), 1821–1826. https://doi.org/10.1016/j.injury.2012.07.188
  • Holliday, S. L., Navarrete, M. G., Hermosillo-Romo, D., Valdez, C. R., Saklad, A. R., Escalante, A., & Brey, R. L. (2003). Validating a computerized neuropsychological test battery for mixed ethnic lupus patients. Lupus, 12(9), 697–703. https://doi.org/10.1191/0961203303lu442oa
  • Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P., & Waldmann, H. (2018). The role of lipid metabolism in T lymphocyte differentiation and survival. Frontiers in Immunology, 8, 1949. https://doi.org/10.3389/fimmu.2017.01949
  • Hupfeld, K. E., McGregor, H. R., Reuter-Lorenz, P. A., & Seidler, R. D. (2021). Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neuroscience and Biobehavioral Reviews, 122, 176–189. https://doi.org/10.1016/j.neubiorev.2020.11.017
  • Inglis-Arkell, E. (2012, December 11). What does space travel do to your mind? Nasa’s resident psychiatrist reveals all. Gizmodo. Retrieved July 22, 2021, from https://io9.gizmodo.com/5967408/what-does-space-travel-do-to-your-mind-nasas-resident-psychiatrist-reveals-all
  • Jeong, S. M., Hwang, G. S., Kim, S. O., Levine, B. D., & Zhang, R. (2014). Dynamic cerebral autoregulation after bed rest: Effects of volume loading and exercise countermeasures. Journal of Applied Physiology, 116(1), 24–31. https://doi.org/10.1152/japplphysiol.00710.2013
  • Jirak, P., Mirna, M., Rezar, R., Motloch, L. J., Lichtenauer, M., Jordan, J., & Jung, C. (2022). How spaceflight challenges human cardiovascular health. European Journal of Preventive Cardiology, 29(10), 1399–1411.
  • Jones, C. W., Basner, M., Mollicone, D. J., Mott, C. M., & Dinges, D. F. (2022). Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep, 45(3), zsac006. https://doi.org/10.1093/sleep/zsac006
  • Jonscher, K. R., Alfonso-Garcia, A., Suhalim, J. L., Orlicky, D. J., Potma, E. O., Ferguson, V. L., Bouxsein, M. L., Bateman, T. A., Stodieck, L. S., Levi, M., Friedman, J. E., Gridley, D. S., & Pecaut, M. J. (2016). Spaceflight activates lipotoxic pathways in mouse liver. PloS one, 11(4), e0152877. https://doi.org/10.1371/journal.pone.0152877
  • Kanamaru, Y., Kikukawa, A., & Shimamura, K. (2006). Salivary chromogranin-A as a marker of psychological stress during a cognitive test battery in humans. Stress, 9(3), 127–131. https://doi.org/10.1080/14769670600909594
  • Kanas, N. (1998). Psychiatric issues affecting long duration space missions. Aviation, Space, and Environmental Medicine, 69(12), 1211–1216.
  • Kanas, N., & Manzey, D. (2008). Space psychology and psychiatry (Vol. 16). Springer.
  • Kanas, N., Salnitskiy, V., Grund, E. M., Weiss, D. S., Gushin, V., Bostrom, A., Kozerenko, O., Sled, A., & Marmar, C. R. (2007). Psychosocial issues in space: Results from Shuttle/Mir. Gravitational and Space Research, 14(2).
  • Kane, R. L., Short, P., Sipes, W., & Flynn, C. F. (2005). Development and validation of the spaceflight cognitive assessment tool for windows (WinSCAT). Aviation, Space, and Environmental Medicine, 76(6), B183–B191.
  • Kay, G. G. (1995). CogScreen aeromedical edition professional manual. Psychological Assessment Resources.
  • Kelly, T. H., Hienz, R. D., Zarcone, T. J., Wurster, R. M., & Brady, J. V. (2005). Crewmember performance before, during, and after spaceflight. Journal of the Experimental Analysis of Behavior, 84(2), 227–241. https://doi.org/10.1901/jeab.2005.77-04
  • Kermorgant, M., Nasr, N., Czosnyka, M., Arvanitis, D. N., Hélissen, O., Senard, J. M., & Pavy-Le Traon, A. (2020). Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00778
  • Kirkpatrick, A. W., Ball, C. G., Campbell, M., Williams, D. R., Parazynski, S. E., Mattox, K. L., & Broderick, T. J. (2009). Severe traumatic injury during long duration spaceflight: Light years beyond ATLS. Journal of Trauma Management & Outcomes, 3(1), 1–11. https://doi.org/10.1186/1752-2897-3-4
  • Kokhan, V. S., Anokhin, P. K., Belov, O. V., & Gulyaev, M. V. (2019). Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions. Neuroscience, 416, 295–308. https://doi.org/10.1016/j.neuroscience.2019.08.009
  • Kraft, C. C. (2001). Flight: My life in mission control. Dutton Adult.
  • Kramer, L. A., Sargsyan, A. E., Hasan, K. M., Polk, J. D., & Hamilton, D. R. (2012). Orbital and intracranial effects of microgravity: Findings at 3-T MR imaging. Radiology, 263(3), 819–827. https://doi.org/10.1148/radiol.12111986
  • Kranz, G. (2001). Failure is not an option: Mission control from mercury to apollo 13 and beyond. Simon and Schuster.
  • Kuldavletova, O., Navarro Morales, D. C., Quarck, G., Denise, P., & Clément, G. (2023). Spaceflight alters reaction time and duration judgment of astronauts. Frontiers in Physiology, 14, 420. https://doi.org/10.3389/fphys.2023.1141078
  • Lee, S. H., Dudok, B., Parihar, V. K., Jung, K. M., Zöldi, M., Kang, Y. J., Maroso, M., Alexander, A. L., Nelson, G. A., Piomelli, D., Katona, I., Limoli, C. L., & Soltesz, I. (2017). Neurophysiology of space travel: Energetic solar particles cause cell type-specific plasticity of neurotransmission. Brain Structure & Function, 222(5), 2345–2357. https://doi.org/10.1007/s00429-016-1345-3
  • Lee, A. G., Mader, T. H., Gibson, C. R., Brunstetter, T. J., & Tarver, W. J. (2018). Space flight-associated neuro-ocular syndrome (SANS). Eye, 32(7), 1164–1167. https://doi.org/10.1038/s41433-018-0070-y
  • Leone, G., Lipshits, M., Gurfinkel, V., & Berthoza, A. (1995). Is there an effect of weightlessness on mental rotation of three-dimensional objects? Cognitive Brain Research, 2(4), 255–267. https://doi.org/10.1016/0926-6410(95)90017-9
  • Levinsons, D. M., & Reeves, D. L. (1997). Monitoring recovery from traumatic brain injury using automated neuropsychological assessment metrics (ANAM V1. 0). Archives of Clinical Neuropsychology, 12(2), 155–166. https://doi.org/10.1093/arclin/12.2.155
  • Linnarsson, D., Carpenter, J., Fubini, B., Gerde, P., Karlsson, L. L., Loftus, D. J., Prisk, G. K., Staufer, U., Tranfield, E. M., & van Westrenen, W. (2012). Toxicity of lunar dust. Planetary and Space Science, 74(1), 57–71. https://doi.org/10.1016/j.pss.2012.05.023
  • Manzey, D., & Lorenz, B. (1998). Mental performance during short-term and long-term spaceflight. Brain Research, 28(1–2), 215–221. https://doi.org/10.1016/S0165-0173(98)00041-1
  • Manzey, D., Lorenz, B., Heuers, H., & Sangals, J. (2000). Impairments of manual tracking performance during spaceflight: More converging evidence from a 20-day space mission. Ergonomics, 43(5), 589–609. https://doi.org/10.1080/001401300184279
  • Manzey, D., Lorenz, B., & Poljakov, V. (1998). Mental performance in extreme environments: Results from a performance monitoring study during a 438-day spaceflight. Ergonomics, 41(4), 537–559. https://doi.org/10.1080/001401398186991
  • Manzey, D., Lorenz, B., Schiewe, A., Finell, G., & Thiele, G. (1993). Behavioral aspects of human adaptation to space analyses of cognitive and psychomotor performance in space during an 8-day space mission. The Clinical Investigator, 71(9), 725–731. https://doi.org/10.1007/BF00209727
  • Manzey, D., Lorenz, B., Schiewe, A., Finell, G., & Thiele, G. (1995). Dual-task performance in space: Results from a single-case study during a short-term space mission. Human Factors, 37(4), 667–681. https://doi.org/10.1518/001872095778995599
  • Matsakis, Y., Lipshits, M., Gurfinkel, V., & Berthoz, A. (1993). Effects of prolonged weightlessness on mental rotation of three-dimensional objects. Experimental Brain Research Volume, 94, 152–162. https://doi.org/10.1007/BF00230478
  • McIntyre, J., Lipshits, M., Zaoui, M., Berthoz, A., & Gurfinkel, V. (2001). Internal reference frames for representation and storage of visual information: The role of gravity. Acta Astronautica, 49(3–10), 111–121. https://doi.org/10.1016/S0094-5765(01)00087-X
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA state- ment. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  • Moore, T. M., Basner, M., Nasrini, J., Hermosillo, E., Kabadi, S., Roalf, D. R., McGuire, S., Ecker, A. J., Ruparel, K., Port, A. M., Jackson, C. T., Dinges, D. F., & Gur, R. C. (2017). Validation of the cognition test battery for spaceflight in a sample of highly educated adults. Aerospace Medicine and Human Performance, 88(10), 937–946. https://doi.org/10.3357/AMHP.4801.2017
  • NASA. (2009). Web based programs assess cognitive fitness. https://doi.org/10.1289/ehp.7339
  • Nasrini, J., Hermosillo, E., Dinges, D. F., Moore, T. M., Gur, R. C., & Basner, M. (2020). Cognitive performance during confinement and sleep restriction in NASA’s human exploration research analog (HERA). Frontiers in Physiology, 11, 394. https://doi.org/10.3389/fphys.2020.00394
  • Newberg, A. B. (1994). Changes in the central nervous system and their clinical correlates during long-term spaceflight. Aviation, Space, and Environmental Medicine, 65(6), 562–572.
  • Newman & Lathan. (1999). Memory processes and motor control in extreme environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 29(3), 387–394. https://doi.org/10.1109/5326.777074
  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839. https://doi.org/10.1289/ehp.7339
  • Ortuño-Sierra, J., Aritio-Solana, R., Del Casal, A. D. G., & Fonseca-Pedrero, E. (2020). Neurocognitive functioning in adolescents at risk for suicidal behaviors. Archives of Suicide Research, 1–15. https://doi.org/10.1080/13811118.2020.1746938
  • Parihar, V. K., Allen, B., Tran, K. K., Macaraeg, T. G., Chu, E. M., Kwok, S. F., Chmielewski, N. N., Craver, B. M., Baulch, J. E., Charya, M. M., Cucinotta, F. A., & Limoli, C. L. (2015). What happens to your brain on the way to Mars. Science Advances, 1(4), e1400256. n (i.e., one night without sleep. https://doi.org/10.1126/sciadv.1400256
  • Pattyn, N., Migeotte, P., Morais, J., Soetens, E., Cluydts, R., & Kolinsky, R. (2009). Crew performance monitoring: Putting some feeling into it. Acta Astronautica, 65(3–4), 325–329. https://doi.org/10.1016/j.actaastro.2009.01.063
  • Pattyn, N., Mingeotte, P., Demaeseleer, W., Kolinsky, K., Morais, J., & Zizi, M. (2005). Investigating human cognitive performance during spaceflight. In 9th European symposium on life sciences research in space/26th annual international gravitational physiology meeting. European Space Agency.
  • Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37(1), 51–87. https://doi.org/10.1111/j.1469-7610.1996.tb01380.x
  • Prisk, G. K. (2014). Microgravity and the respiratory system. European Respiratory Journal, 43(5), 1459–1471. https://doi.org/10.1183/09031936.00001414
  • Priyadarshini, S., & Aich, P. (2012). Effects of psychological stress on innate immunity and metabolism in humans: A systematic analysis. PloS one, 7(9), e43232. https://doi.org/10.1371/journal.pone.0043232
  • Protogerou, C., & Hagger, M. S. (2020). A checklist to assess the quality of survey studies in psychology. Methods in Psychology, 3, 100031. https://doi.org/10.1016/j.metip.2020.100031
  • Ratino, D. A., Repperger, D. W., Goodyear, C., Potor, G., & Rodriguez, L. E. (1988). Quantification of reaction time and time perception during Space Shuttle operations. Aviation, Space, and Environmental Medicine, 59(3), 220–224.
  • Reeves, D. L., Winter, K. P., LaCour, S. J., Raynsford, K. M., & Vogel, K. (1991). The UTC-PAB/AGARD STRES Battery: User’s manual and system documentation. Naval Aerospace Medical Research Lab Pensacola Fl.
  • Roberts, D., Asemani, D., Nietert, P., Eckert, M., Inglesby, D., Bloomberg, J., George, M., & Brown, T. (2019). Prolonged microgravity affects human brain structure and function. American Journal of Neuroradiology, 40(11), 1878–1885. https://doi.org/10.3174/ajnr.A6249
  • Robinson, L. J., & Nicol Ferrier, I. (2006). Evolution of cognitive impairment in bipolar disorder: A systematic review of cross‐sectional evidence. Bipolar Disorders, 8(2), 103–116. https://doi.org/10.1111/j.1399-5618.2006.00277.x
  • Rosi, S. (2018). The final frontier: Transient microglia reduction after cosmic radiation exposure mitigates cognitive impairments and modulates phagocytic activity. Brain Circulation, 4(3), 109. https://doi.org/10.4103/bc.bc_24_18
  • Ross, H. E., Schwartz, E., & Emmerson, P. A. U. L. (1987). The nature of sensorimotor adaptation to altered G-levels: Evidence from mass discrimination. Aviation, Space, and Environmental Medicine, 58(9 Pt 2), A148–52.
  • Roy-O’Reilly, M., Mulavara, A., & Williams, T. (2021). A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. Npj Microgravity, 7(1), 1–9. https://doi.org/10.1038/s41526-021-00133-z
  • Schiflett, D., Schlegel, R., Shehab, R., Gilliland, K., & Douglas, R. (1995). Microgravity effects on cognitive performance measures: Practice schedules to acquire to acquire and maintain performance stability. Microgravity effects on cognitive performance measures: Practice schedules to acquire and maintain performance stability. Armstrong Laboratory (AFMC) Crew Systems Directorate, Brooks Air Force Base, TX, Report No. AL/CF-TR-1994-0040.
  • Schlegel, R. E., Gilliland, K., & Crabtree, M. S. (1992). Development of the UTC-PAB normative database. Southeastern Center for Electrical Engineering Education Inc St Cloud Fl.
  • Schneider, S., Brümmer, V., Carnahan, H., Dubrowski, A., Askew, C. D., & Strüder, H. K. (2008). What happens to the brain in weightlessness? A first approach by EEG tomography. Neuroimage, 42(4), 1316–1323. https://doi.org/10.1016/j.neuroimage.2008.06.010
  • Scully, R. R., Basner, M., Nasrini, J., Lam, C. W., Hermosillo, E., Gur, R. C., Moore, T., Alexander, D. J., Satish, U., & Ryder, V. E. (2019). Effects of acute exposures to carbon dioxide on decision making and cognition in astronaut-like subjects. Npj Microgravity, 5(1), 1–15. accessed May 6th https://spinoff.nasa.gov/Spinoff2009/hm_8.html 10.1038/s41526-019-0071-6
  • Shephard, J. M., & Kosslyn, S. (2005). The MiniCog rapid assessment battery: Developing a “blood pressure cuff for the mind.” Aviation, Space, and Environmental Medicine, 76(6), B192–B197.
  • Smith, A. (1973). Symbol digit modalities test. Western Psychological Services.
  • Strangman, G. E., Sipes, W., & Beven, G. (2014). Human cognitive performance in spaceflight and analogue environments. Aviation, Space, and Environmental Medicine, 85(10), 1033–1048. https://doi.org/10.3357/ASEM.3961.2014
  • Tu, D., Basner, M., Smith, M. G., Williams, E. S., Ryder, V. E., Romoser, A. A., Ecker, A., Aeschbach, D., Stahn, A. C., Jones, C. W., Howard, K., Kaizi-Lutu, M., Dinges, D. F., & Shou, H. (2022). Dynamic ensemble prediction of cognitive performance in spaceflight. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-14456-8
  • Van Ombergen, A., Jillings, S., Jeurissen, B., Tomilovskaya, E., Rumshiskaya, A., Litvinova, L., … Wuyts, F. L. (2019). Brain ventricular volume changes induced by long-duration spaceflight. Proceedings of the National Academy of Sciences, 116(21), 10531–10536. https://doi.org/10.1073/pnas.1820354116
  • Warden, D. L., Bleiberg, J., Cameron, K., Sun, W, Sparling, M.B., Cernich , A.N., Peck, K., Reeves, D.L., Walter, J., Uhorchak, J., & Ecklund, J. (2003). The effect of concussion history on cognitive symptom severity following acute concussion. In Meeting of the American Academy of neurology, Honolulu, HI. Neurology, 60 (1),A302.
  • Waters, F., & Bucks, R. S. (2011). Neuropsychological effects of sleep loss: Implication for neuropsychologists. Journal of the International Neuropsychological Society: JINS, 17(4), 571. https://doi.org/10.1017/S1355617711000610
  • Weinberger, R., Weisman, O., Guri, Y., Harel, T., Weizman, A., & Gothelf, D. (2018). The interaction between neurocognitive functioning, subthreshold psychotic symptoms and pharmacotherapy in 22q11. 2 deletion syndrome: A longitudinal comparative study. European Psychiatry, 48(1), 20–26. https://doi.org/10.1016/j.eurpsy.2017.10.010
  • Whyte, E., Skidmore, E., Aizenstein, H., Ricker, J., & Butters, M. (2011). Cognitive impairment in acquired brain injury: A predictor of rehabilitation outcomes and an opportunity for novel interventions. Pm&r, 3(6), S45–S51. https://doi.org/10.1016/j.pmrj.2011.05.007
  • Wilken, J. A., Kane, R., Sullivan, C. L., Wallin, M., Usiskin, J. B., Quig, M. E., Simsarian, J., Saunders, C., Crayton, H., Mandler, R., Kerr, D., Reeves, D., Fuchs, K., Manning, C., & Keller, M. (2003). The utility of computerized neuropsychological assessment of cognitive dysfunction in patients with relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 9(2), 119–127. https://doi.org/10.1191/1352458503ms893oa
  • Wu, J., Wang, C., Sun, J., & Xue, Y. (2011). Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways. ACS nano, 5(6), 4476–4489. https://doi.org/10.1021/nn103530b
  • Wu, B., Wang, Y., Wu, X., Liu, D., Xu, D., & Wang, F. (2018). On-orbit sleep problems of astronauts and countermeasures. Military Medical Research, 5(1), 1–12. https://doi.org/10.1186/s40779-018-0165-6
  • Zelenyi, L. M., Zakharov, A. V., Kuznetsov, I. A., & Shekhovtsova, A. V. (2021). Moondust As a Risk Factor in Lunar Exploration. Herald of the Russian Academy of Sciences, 91(6), 637–646. https://doi.org/10.1134/S1019331621060071
  • Zhang, L. F., & Hargens, A. R. (2018). Spaceflight-induced intracranial hypertension and visual impairment: Pathophysiology and countermeasures. Physiological Reviews, 98(1), 59–87. https://doi.org/10.1152/physrev.00017.2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.