144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of the Virtual Kitchen Protocol for Prospective Memory: a virtual reality-based measure of everyday prospective memory abilities

ORCID Icon & ORCID Icon
Pages 618-635 | Received 11 Jan 2023, Accepted 19 Nov 2023, Published online: 08 Dec 2023

References

  • Abney, D. H., McBride, D. M., & Petrella, S. N. (2013). Interactive effects in transfer-appropriate processing for event-based prospective memory: The roles of effort, ongoing task, and PM cue properties. Mem Cogn, 41(7), 1032–1045. https://doi.org/10.3758/s13421-013-0324-7
  • Altgassen, M., Rendell, P. G., Bernhard, A., Henry, J. D., Bailey, P. E., Phillips, L. H., & Kliegel, M. (2015). Future thinking improves prospective memory performance and plan enactment in older adults. The Quarterly Journal of Experimental Psychology, 68(1), 192–204. https://doi.org/10.1080/17470218.2014.956127
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.).
  • Azzopardi, B., Juhel, J., & Auffray, C. (2015). Aging and performance on laboratory and naturalistic prospective memory tasks: The mediating role of executive flexibility and retrospective memory. Intelligence, 52, 24–35. https://doi.org/10.1016/j.intell.2015.06.007
  • Banville, F., Nolin, P., Lalonde, S., Henry, M., Dery, M.-P., & Villemure, R. (2010). Multitasking and prospective memory: Can virtual reality be useful for diagnosis? Behavioural Neurology, 23(4), 209–211. https://doi.org/10.1155/2010/320707
  • Barnett, M. D., Childers, L. G., & Parsons, T. D. (2021). A virtual kitchen protocol to measure everyday memory functioning for meal preparation. Brain Sciences, 11(5), 571. https://doi.org/10.3390/brainsci11050571
  • Besnard, J., Richard, P., Banville, F., Nolin, P., Aubin, G., Le Gall, D., Richard, I., & Allain, P. (2016). Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury. Applied Neuropsychology: Adult, 23(3), 223–235. https://doi.org/10.1080/23279095.2015.1048514
  • Bowden, V. K., Smith, R. E., & Loft, S. (2017). Eye movements provide insights into the conscious use of context in prospective memory. Consciousness and Cognition: An International Journal, 52, 68–74. https://doi.org/10.1016/j.concog.2017.04.003
  • Brooks B. M., Rose F. D., Potter J., Jayawardena S., & Morling A. (2004). Assessing stroke patients’ prospective memory using virtual reality. Brain Injury, 18(4), 391–401. https://doi.org/10.1080/02699050310001619855
  • Bucur, B., & Madden, D. J. (2010). Effects of adult age and blood pressure on executive function and speed of processing. Experimental Aging Research, 36(2), 153–168. https://doi.org/10.1080/03610731003613482
  • Canty, A. L., Fleming, J., Patterson, F., Green, H. J., Man, D., & Shum, D. H. K. (2014). Evaluation of a virtual reality prospective memory task for use with individuals with severe traumatic brain injury. Neuropsychological Rehabilitation, 24(2), 238–265. https://doi.org/10.1080/09602011.2014.881746
  • Charlton, R. A., Schiavone, F., Barrick, T. R., Morris, R. G., & Markus, H. S. (2010). Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline. Journal of Neurology, Neurosurgery & Psychiatry, 81(1), 13–19. https://doi.org/10.1136/jnnp.2008.167288
  • Cohen, A.-L., Gordon, A., Jaudas, A., Hefer, C., & Dreisbach, G. (2017). Let it go: The flexible engagement and disengagement of monitoring processes in a non-focal prospective memory task. Psychological Research, 81(2), 366–377. https://doi.org/10.1007/s00426-016-0744-7
  • Craik, F. I. M., Bialystok, E., Gillingham, S., & Stuss, D. T. (2018). Alpha span: A measure of working memory. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 72(3), 141–152. https://doi.org/10.1037/cep0000143
  • Delprado, J., Kinsella, G., Ong, B., Pike, K., Ames, D., Storey, E., Saling, M., Clare, L., Mullaly, E., & Rand, E. (2012). Clinical measures of prospective memory in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society : JINS, 18(2), 295–304. https://doi.org/10.1017/S135561771100172X
  • Dismukes, R. K. (2012). Prospective memory in workplace and everyday situations. Current Directions in Psychological Science, 21(4), 215–220. https://doi.org/10.1177/0963721412447621
  • Dong, D., Wong, L. K. F., & Luo, Z. (2017). Assess BA10 activity in slide-based and immersive virtual reality prospective memory task using functional near-infrared spectroscopy (fNIRS). Applied Neuropsychology: Adult, 26(5), 465–471. https://doi.org/10.1080/23279095.2018.1443104
  • Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717–726. https://doi.org/10.1037/0278-7393.16.4.717
  • Einstein, G. O., McDaniel, M. A., Thomas, R., Mayfield, S., Shank, H., Morrisette, N., & Breneiser, J. (2005). Multiple processes in prospective memory retrieval: Factors determining monitoring versus spontaneous retrieval. Journal of Experimental Psychology: General, 134(3), 327–342. https://doi.org/10.1037/0096-3445.134.3.327
  • Ellis, J. A., & Freeman, J. E. (2008). Ten Years on: Realizing delayed intentions. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 1–27). Taylor & Francis Group/Lawrence Erlbaum Associates.
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146
  • Fish, J., Wilson, B., & Manly, T. (2010). The assessment and rehabilitation of prospective memory problems in people with neurological disorders: A review. Neuropsychological Rehabilitation, 20(2), 161–179. https://doi.org/10.1080/09602010903126029
  • Gibson, E. C., Barker, M. S., Martin, A. K., & Robinson, G. A. (2019). Initiation, inhibition and strategy generation across the healthy adult lifespan. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 34(4), 511–523. https://doi.org/10.1093/arclin/acy057
  • Gonneaud, J., Piolino, P., Lecouvey, G., Madeleine, S., Orriols, E., Fleury, P., Eustache, F., & Desgranges, B. (2014). Assessing prospective memory in young healthy adults using virtual reality. In P. M. Sharkey & J. Merrick (Eds.), Virtual reality: People with special needs (pp. 107–120). Nova Science Publishers.
  • Graf, P. (2012). Prospective memory: Faulty brain, flaky person. Canadian Psychology/Psychologie Canadienne, 53(1), 7–13. https://doi.org/10.1037/a0026516
  • Graf, P., & Uttl, B. (2001). Prospective memory: A new focus for research. Consciousness and Cognition: An International Journal, 10(4), 437–450. https://doi.org/10.1006/ccog.2001.0504
  • Gromer, D., Madeira, O., Gast, P., Nehfischer, M., Jost, M., Müller, M., Mühlberger, A., & Pauli, P. (2018). Height simulation in a virtual reality CAVE system: Validity of fear responses and effects of an immersion manipulation. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00372
  • Henry, J. D., MacLeod, M. S., Phillips, L. H., & Crawford, J. R. (2004). A meta-analytic review of prospective memory and aging. Psychology and Aging, 19(1), 27–39. https://doi.org/10.1037/0882-7974.19.1.27
  • Hering, A., Cortez, S. A., Kliegel, M., & Altgassen, M. (2014). Revisiting the age-prospective memory-paradox: The role of planning and task experience. European Journal of Aging, 11(1), 99–106. https://doi.org/10.1007/s10433-013-0284-6
  • Hogan C., Cornwell, P., Fleming, J., Man, D. W., & Shum, D. H. (2023). Assessment of prospective memory after stroke utilizing virtual reality. Virtual Reality, 27(1), 333–346. https://doi.org/10.1007/s10055-021-00576-5
  • Hsu, Y. H., Huang, C. F., Huang, W. H., Deng, J. F., & Tu, M. C. (2019). Microstructural correlates and laterality effect of prospective memory in non-demented adults with memory complaints. Dementia and Geriatric Cognitive Disorders, 47(4–6), 375–384. https://doi.org/10.1159/000501366
  • HTC Corporation. (2018). Products. Vive. https://www.vive.com/us/product/vive-pro-full-kit/
  • Kamat, R., Weinborn, M., Kellogg, E. J., Bucks, R. S., Velnoweth, A., & Woods, S. P. (2014). Construct validity of the memory for intentions screening test (MIsT) in healthy older adults. Assessment, 21(6), 742–753. https://doi.org/10.1177/1073191114530774
  • Kim, P. Y., & Mayhorn, C. B. (2008). Exploring students’ prospective memory inside and outside the lab. The American Journal of Psychology, 121(2), 241–254. https://doi.org/10.2307/20445459
  • Kliegel, M., Jäger, T., & Phillips, L. H. (2008). Adult age differences in event-based prospective memory: A meta-analysis on the role of focal versus nonfocal cues. Psychology and Aging, 23(1), 203–208. https://doi.org/10.1037/0882-7974.23.1.203
  • Knight, R. G., & Titov, N. (2009). Use of virtual reality tasks to assess prospective memory: Applicability and evidence. Brain Impairment, 10(1), 3–13. https://doi.org/10.1375/brim.10.1.3
  • Ko, H., & Rabin, L. A. (2015). Reliability of a recently developed clinical prospective memory task in a community-dwelling sample of older adults. Psi Chi Journal of Psychological Research, 20(4), 236–246. https://doi.org/10.24839/2164-8204.JN20.4.236
  • Kourtesis, P., Collina, S., Doumas, L., & MacPherson, S. (2021). Validation of the virtual reality everyday assessment lab (VR-EAL): An immersive virtual reality neuropsychological battery with enhanced ecological validity. Journal of the International Neuropsychological Society, 27(2), 181–196. https://doi.org/10.1017/S1355617720000764
  • Kourtesis, P., & MacPherson, S. (2021). How immersive virtual reality methods may meet the criteria of the National Academy of Neuropsychology and American Academy of clinical Neuropsychology: A software review of the virtual reality everyday assessment lab (VR-EAL). Computers in Human Behavior Reports, 4, 100151. https://doi.org/10.1016/j.chbr.2021.100151
  • Kvavilashvili, L., Cockburn, J., & Kornbrot, D. E. (2013). Prospective memory and ageing paradox with event-based tasks: A study of young, young-old, and old-old participants. The Quarterly Journal of Experimental Psychology, 66(5), 864–875. https://doi.org/10.1080/17470218.2012.721379
  • Lawry, S., Popovic, V., Blackler, A., & Thompson, H. (2019). Age, familiarity, and intuitive use: An empirical investigation. Applied Ergonomics, 74, 74–84. https://doi.org/10.1016/j.apergo.2018.08.016
  • Lecouvey, G., Gonneaud, J., Piolino, P., Madeleine, S., Orriols, E., Fleury, P., Eustache, F., & Desgranges, B. (2017). Is binding decline the main source of the ageing effect on prospective memory? A ride in a virtual town. Socioaffective Neuroscience & Psychology, 7(1), 1304610. https://doi.org/10.1080/20009011.2017.1304610
  • Lecouvey, G., Morand, A., Gonneaud, J., Piolino, P., Orriols, E., Pélerin, A., Ferreira Da Silva, L., de La Sayette, V., Eustache, F., & Desgranges, B. (2019). An impairment of prospective memory in mild Alzheimer’s disease: A ride in a virtual town. Frontiers in Psychology, 10, 241. https://doi.org/10.3389/fpsyg.2019.00241
  • Lewis-Peacock, J. A., Cohen, J. D., & Norman, K. A. (2016). Neural evidence of the strategic choice between working memory and episodic memory in prospective remembering. Neuropsychologia, 93(Part A), 280–288. https://doi.org/10.1016/j.neuropsychologia.2016.11.006
  • Man, D. W. K., Ganesan, B., Yip, C. C. K., Lee, C. O. P., Tsang, S. Y. L., Yu, P. W. P., Young, J. G. E., & Shum, D. H. K. (2018). Validation of the virtual-reality prospective memory test (Hong Kong Chinese version) for individuals with first-episode schizophrenia. Neuropsychological Rehabilitation, 28(7), 1197–1210. https://doi.org/10.1080/09602011.2016.1251949
  • Mantyla, T. (2003). Assessing absentmindedness: Prospective memory complaint and impairment in middle-aged adults. Memory & Cognition, 31(1), 15–25. https://doi.org/10.3758/bf03196078
  • Massa, F., Grisanti, S., Brugnolo, A., Doglione, E., Orso, B., Morbelli, S., Bauckneht, M., Origone, P., Filippi, L., Arnaldi, D., De Carli, F., Pardini, M., Pagani, M., Nobili, F., & Girtler, N. (2020). The role of anterior prefrontal cortex in prospective memory: An exploratory FDG-PET study in early Alzheimer’s disease. Neurobiology of Aging, 96, 117–127. https://doi.org/10.1016/j.neurobiolaging.2020.09.003
  • Matchanova, A., Woods, S. P., Cushman, C., Morgan, E. E., Medina, L. D., Babicz, M. A., Verduzco, M., & Loft, S. (2021). Online pharmacy navigation skills are associated with prospective memory in HIV disease. The Clinical Neuropsychologist, 35(3), 518–540. https://doi.org/10.1080/13854046.2020.1840632
  • McDaniel, M. A., & Einstein, G. O. (2011). The neuropsychology of prospective memory in normal aging: A componential approach. Neuropsychologia, 49(8), 2147–2155. https://doi.org/10.1016/j.neuropsychologia.2010.12.029
  • McGeorge, P., Phillips, L. H., Crawford, J. R., Garden, S. E., Sala, S. D., Milne, A. B., Hamilton, S., & Callender, J. S. (2001). Using virtual environments in the assessment of executive dysfunction. Presence Teleoperators & Virtual Environments, 10(4), 375–383. https://doi.org/10.1162/1054746011470235
  • Mioni, G., Grondin, S., McLennan, S. N., & Stablum, F. (2020). The role of time-monitoring behaviour in time-based prospective memory performance in younger and older adults. Memory, 28(1), 34–48. https://doi.org/10.1080/09658211.2019.1675711
  • Mioni, G., McClintock, S. M., & Stablum, F. (2014). Understanding, assessing and treating prospective memory dysfunctions in traumatic brain injury patients. In F. Sadaka (Ed.), Traumatic brain injury (pp. 401–436). IntechOpen. https://doi.org/10.5772/57307
  • Morand, A., Segobin, S., Lecouvey, G., Gonneaud, J., Eustache, F., Rauchs, G., & Desgranges, B. (2021). Brain substrates of time-based prospective memory decline in aging: A voxel-based morphometry and diffusion tensor imaging study. Cerebral Cortex, 31(1), 396–409. https://doi.org/10.1093/cercor/bhaa232
  • Morand, A., Segobin, S., Lecouvey, G., Gonneaud, J., Eustache, F., Rauchs, G., & Desgranges, B. (2023). Alterations in resting-state functional connectivity associated to the age-related decline in time-based prospective memory. Cerebral Cortex, 33(8), 4374–4383. https://doi.org/10.1093/cercor/bhac349
  • Mullet, H. G., Scullin, M. K., Hess, T. J., Scullin, R. B., Arnold, K. M., & Einstein, G. O. (2013). Prospective memory and aging: Evidence for preserved spontaneous retrieval with exact but not related cues. Psychology and Aging, 28(4), 910–922. https://doi.org/10.1037/a0034347
  • Niedźwieńska, A., Janik, B., & Jarczyńska, A. (2013). Age-related differences in everyday prospective memory tasks: The role of planning and personal importance. International Journal of Psychology, 48(6), 1291–1302. https://doi.org/10.1080/00207594.2012.752097
  • Niedźwieńska, A., Sołga, J., Zagaja, P., Żołnierz, M., & Ginsberg, S. D. (2020). Everyday memory failures across adulthood: Implications for the age prospective memory paradox. PLoS ONE, 15(9), e0239581. https://doi.org/10.1371/journal.pone.0239581
  • Nolin, P., Banville, F., Cloutier, J., & Allain, P. (2013). Virtual Reality as a New Approach to Assess Cognitive Decline in the Elderly. AJIS. https://doi.org/10.5901/ajis.2013.v2n8p612
  • Nolin, P., Stipanicic, A., Henry, M., Lachapelle, Y., Lussier-Desrochers, D., Rizzo, A., & Allain, P. (2016). ClinicaVR: Classroom-CPT: A virtual reality tool for assessing attention and inhibition in children and adolescents. Computers in Human Behavior, 59, 327–333. https://doi.org/10.1016/j.chb.2016.02.023
  • Owens, M. E., & Beidel, D. C. (2015). Can Virtual Reality Effectively Elicit Distress Associated with Social Anxiety Disorder? J Psychopathol Behav Assess, 37(2), 296–305. https://doi.org/10.1007/s10862-014-9454-x
  • Parsons, T. D., & Barnett, M. (2017). Validity of a newly developed measure of memory: Feasibility study of the virtual environment grocery store. Journal of Alzheimer’s Disease: JAD, 59(4), 1227–1235. https://doi.org/10.3233/JAD-170295
  • Parsons, T. D. (2015). Ecological validity in virtual reality-based neuropsychological assessment. In Khosrow-Pour DBA, M. Eds.3rd, Encyclopedia of Information Science and Technologypp. 1006–1015. IGI Global. https://doi.org/10.4018/978-1-4666-5888-2.ch095
  • Pirogovsky, E., Woods, S., Vincent Filoteo, J., & Gilbert, P. (2012). Prospective memory deficits are associated with poorer everyday functioning in Parkinson’s disease. Journal of the International Neuropsychological Society: JINS, 18(6), 986–995. https://doi.org/10.1017/S1355617712000781
  • Rabin, L. A., Chi, S. Y., Wang, C., Fogel, J., Kann, S. J., & Aronov, A. (2014). Prospective memory on a novel clinical task in older adults with mild cognitive impairment and subjective cognitive decline. Neuropsychological Rehabilitation, 24(6), 868–893. https://doi.org/10.1080/09602011.2014.915855
  • Radford, K. A., Lah, S., Say, M. J., & Miller, L. A. (2011). Validation of a new measure of prospective memory: The royal Prince Alfred prospective memory test. The Clinical Neuropsychologist, 25(1), 127–140. https://doi.org/10.1080/13854046.2010.529463
  • Raskin, S. A. (2009). Memory for intentions screening test: Psychometric properties and clinical evidence. Brain Impairment, 10(1), 23–33. https://doi.org/10.1375/brim.10.1.23
  • Raskin, S., Buckheit, C., & Sherrod, C. (2010). Memory for intentions test (MIsT). Psychological Assessment Resources.
  • Raskin, S. A., Shum, D. H. K., Ellis, J., Pereira, A., & Mills, G. (2018). A comparison of laboratory, clinical, and self-report measures of prospective memory in healthy adults and individuals with brain injury. Journal of Clinical and Experimental Neuropsychology, 40(5), 423–436. https://doi.org/10.1080/13803395.2017.1371280
  • Rendell, P. G., & Craik, F. I. (2000). Virtual week and actual week: Age-related differences in prospective memory. Applied Cognitive Psychology, 14(7). https://doi.org/10.1002/acp.770
  • Rendell, P., & Henry, J. (2009). A review of virtual week for prospective memory assessment: Clinical implications. Brain Impairment, 10(1), 14–22. https://doi.org/10.1375/brim.10.1.14
  • Rizzo, A., Gambino, G., Sardo, P., & Rizzo, V. (2020). Being in the past and perform the future in a virtual world: VR applications to assess and enhance episodic and prospective memory in normal and pathological aging. Frontiers in Human Neuroscience, 14, 297. https://doi.org/10.3389/fnhum.2020.00297
  • Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1/2), 207–240. https://doi.org/10.1080/09602010343000183
  • Roberts, A. C., Yeap, Y. W., Seah, H. S., Chan, E., Soh, C.-K., & Christopoulos, G. I. (2019). Assessing the suitability of virtual reality for psychological testing. Psychological Assessment, 31(3), 318–328. https://doi.org/10.1037/pas0000663
  • Rose, N. S., Rendell, P. G., McDaniel, M. A., Aberle, I., & Kliegel, M. (2010). Age and individual differences in prospective memory during a ”Virtual Week”: The roles of working memory, vigilance, task regularity, and cue focality. Psychology and Aging, 25(3), 595–605. https://doi.org/10.1037/a0019771
  • Rusticus, S., & Lovato, C. Article 11. (2014). Impact of sample size and variability on the power and type I error rates of equivalence tests: A simulation study. Practical Assessment, Research & Evaluation, 19(1). https://doi.org/10.7275/4s9m-4e81.
  • Schnitzspahn, K. M., Ihle, A., Henry, J. D., Rendell, P. G., & Kliegel, M. (2011). The age-prospective memory-paradox: An exploration of possible mechanisms. International Psychogeriatrics, 23(4), 583–592. https://doi.org/10.1017/S1041610210001651
  • Schnitzspahn, K. M., Kvavilashvili, L., & Altgassen, M. (2020). Redefining the pattern of age-prospective memory-paradox: New insights on age effects in lab-based, naturalistic, and self-assigned tasks. Psychological Research, 84(5), 1370–1386. https://doi.org/10.1007/s00426-018-1140-2
  • Schwartz, A. (2016). Job Simulator [Computer software]. Owlchemy Labs.
  • Shelton, J. T., & Christopher, E. A. (2016). A fresh pair of eyes on prospective memory monitoring. Memory & Cognition, 44(6), 837–845. https://doi.org/10.3758/s13421-016-0601-3
  • Shum, D. K., Cahill, A., Hohaus, L., O’Gorman, J., & Chan, R. K. (2013). Effects of aging, planning, and interruption on complex prospective memory. Neuropsychological Rehabilitation, 23(1), 45–63. https://doi.org/10.1080/09602011.2012.716761
  • Teel, E., Gay, M., Johnson, B., & Slobounov, S. (2016). Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion. Neuropsychology, 30(4), 474–483. https://doi.org/10.1037/neu0000261
  • Trawley, S. L., Law, A. S., Brown, L. A., Niven, E. H., & Logie, R. H. (2014). Prospective memory in a virtual environment: Beneficial effects of cue saliency. Journal of Cognitive Psychology, 26(1), 39–47. https://doi.org/10.1080/20445911.2013.852199
  • Umanath, S., & Marsh, E. J. (2014). Understanding how prior knowledge influences memory in older adults. Perspectives on Psychological Science, 9(4), 408–426. https://doi.org/10.1177/1745691614535933
  • Umeda, S., Kurosaki, Y., Terasawa, Y., Kato, M., & Miyahara, Y. (2011). Deficits in prospective memory following damage to the prefrontal cortex. Neuropsychologia, 49(8), 2178–2184. https://doi.org/10.1016/j.neuropsychologia.2011.03.036
  • Weber, E., Chiaravalloti, N. D., DeLuca, J., & Goverover, Y. (2019). Time-based prospective memory is associated with functional performance in persons with MS. Journal of the International Neuropsychological Society, 25(10), 1035–1043. https://doi.org/10.1017/S135561771900095X
  • Wiederhold, B. K., Davis, R., & Wiederhold, M. D. (1998). The effects of immersiveness on physiology. Studies in Health Technology and Informatics, 58, 52–60. https://doi.org/10.3233/978-1-60750-902-8-52
  • Will, C. M., Rendell, P. G., Ozgis, S., Pierson, J. M., Ong, B., & Henry, J. D. (2009). Cognitively impaired older adults exhibit comparable difficulties on naturalistic and laboratory prospective memory tasks. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory & Cognition, 23(6), 804–812. https://doi.org/10.1002/acp.1514
  • Wilson, B. A., Evans, J. J., Emslie, H., Foley, J., Shiel, A., Watson, P., Hawkins, K., & Groot, Y. (2005). Cambridge prospective memory test. Pearson Assessment.
  • Wilson, E. A. H., & Park, D. (2008). Prospective memory and health behaviors: Context trumps cognition. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 391–410). Taylor & Francis Group/Lawrence Erlbaum Associates.
  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Riverside Publishing.
  • Woods, S. P., Moran, L. M., Dawson, M. S., Carey, C. L., Grant, I., & HIV Neurobehavioral Research Center, T. (2008). Psychometric characteristics of the memory for intentions screening test. The Clinical Neuropsychologist, 22(5), 864–878. https://doi.org/10.1080/13854040701595999
  • Zaidi, S. F. M., Duthie, C., Carr, E., & Maksoud, S. H. A. E. (2018). Conceptual framework for the usability evaluation of gamified virtual reality environment for non-gamers. In Proceedings of the 16th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry (pp. 1–4). Association for Computing Machinery. https://doi.org/10.1145/3284398.3284431.
  • Zanto, T. P., & Gazzaley, A. (2019). Aging of the frontal lobe. Handbook of Clinical Neurology, 163, 369–389. https://doi.org/10.1016/B978-0-12-804281-6.00020-3
  • Zogg, J., Woods, S., Sauceda, J., Wiebe, J., & Simoni, J. (2012). The role of prospective memory in medication adherence: A review of an emerging literature. Journal of Behavioral Medicine, 35(1), 47–62. https://doi.org/10.1007/s10865-011-9341-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.