80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Deficits in the pupillary response associated with abnormal visuospatial attention allocation in mild traumatic brain injury

&
Pages 855-873 | Received 21 Feb 2023, Accepted 25 Nov 2023, Published online: 18 Feb 2024

References

  • Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14(4), 1. https://doi.org/10.1167/14.4.1
  • Alnawmasi, M. M., Walz, J. A., & Khuu, S. K. (2022). Deficits in visuospatial attentional cueing following mild traumatic brain injury. Neuropsychologia, 177, 108422. https://doi.org/10.1016/j.neuropsychologia.2022.108422
  • Aminihajibashi, S., Hagen, T., Andreassen, O. A., Laeng, B., & Espeseth, T. (2020). The effects of cognitive abilities and task demands on tonic and phasic pupil sizes. Biological Psychology, 156, 107945. https://doi.org/10.1016/j.biopsycho.2020.107945
  • Aminihajibashi, S., Hagen, T., Laeng, B., & Espeseth, T. (2020). Pupillary and behavioral markers of alerting and orienting: An individual difference approach. Brain & Cognition, 143, 105597. https://doi.org/10.1016/j.bandc.2020.105597
  • Barnett, B. P., & Singman, E. L. (2015). Vision concerns after mild traumatic brain injury. Current Treatment Options in Neurology, 17(2), 5. https://doi.org/10.1007/s11940-014-0329-y
  • Bast, N., Poustka, L., & Freitag, C. M. (2018). The locus coeruleus–norepinephrine system as pacemaker of attention–a developmental mechanism of derailed attentional function in autism spectrum disorder. The European Journal of Neuroscience, 47(2), 115–125. https://doi.org/10.1111/ejn.13795
  • Belanger, H. G., Curtiss, G., Demery, J. A., Lebowitz, B. K., & Vanderploeg, R. D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: A meta-analysis. Journal of the International Neuropsychological Society, 11(3), 215–227. https://doi.org/10.1017/S1355617705050277
  • Benarroch, E. E. (2009). The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology, 73(20), 1699–1704. https://doi.org/10.1212/WNL.0b013e3181c2937c
  • Berger, A., Henik, A., & Rafal, R. J. J. O. E. P. G. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134(2), 207. https://doi.org/10.1037/0096-3445.134.2.207
  • Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience, 33(5), 2199–2204. https://doi.org/10.1523/JNEUROSCI.3440-12.2013
  • Binda, P., Pereverzeva, M., & Murray, S. O. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology, 112(12), 3046–3052. https://doi.org/10.1152/jn.00502.2014
  • Binder, L. M., Rohling, M. L., & Larrabee, G. J. (1997). A review of mild head trauma. Part I: Meta-analytic review of neuropsychological studies. Journal of Clinical Experimental Neuropsychology, 19(3), 421–431. https://doi.org/10.1080/01688639708403870
  • Boxhoorn, S., Bast, N., Super, H., Polzer, L., Cholemkery, H., & Freitag, C. M. (2020). Pupil dilation during visuospatial orienting differentiates between autism spectrum disorder and attention‐deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 61(5), 614–624. https://doi.org/10.1111/jcpp.13179
  • Ciuffreda, K. J., Kapoor, N., Rutner, D., Suchoff, I. B., Han, M. E., & Craig, S. (2007). Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis. Optometry-Journal of the American Optometric Association, 78(4), 155–161. https://doi.org/10.1016/j.optm.2006.11.011
  • Coyne, J., & Sibley, C. (2016). Investigating the use of two low cost eye tracking systems for detecting pupillary response to changes in mental workload. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60(1), 37–41. https://doi.org/10.1177/1541931213601009
  • Eckert, M., Habets, E. A., & Rummukainen, O. S. (2021). Cognitive load estimation based on pupillometry in virtual reality with uncontrolled scene lighting. In Paper presented at the 2021 13th International Conference on Quality of Multimedia Experience (QoMEX), Montreal, QC, Canada.
  • Esterov, D., & Greenwald, B. D. (2017). Autonomic dysfunction after mild traumatic brain injury. Brain Sciences, 7(12), 100. https://doi.org/10.3390/brainsci7080100
  • Frencham, K. A., Fox, A. M., & Maybery, M. T. (2005). Neuropsychological studies of mild traumatic brain injury: A meta-analytic review of research since 1995. Journal of Clinical Experimental Neuropsychology, 27(3), 334–351. https://doi.org/10.1080/13803390490520328
  • Gabay, S., Pertzov, Y., & Henik, A. (2011). Orienting of attention, pupil size, and the norepinephrine system. Attention, Perception, Psychophysics, 73(1), 123–129. https://doi.org/10.3758/s13414-010-0015-4
  • Goldinger, S. D., & Papesh, M. H. J. C. D. I. P. S. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21(2), 90–95. https://doi.org/10.1177/0963721412436811
  • Granholm, E., Morris, S. K., Sarkin, A. J., Asarnow, R. F., & Jeste, D. V. (1997). Pupillary responses index overload of working memory resources in schizophrenia. Journal of Abnormal Psychology, 106(3), 458. https://doi.org/10.1037/0021-843X.106.3.458
  • Granholm, E. L., Panizzon, M. S., Elman, J. A., Jak, A. J., Hauger, R. L., Bondi, M. W., & Kremen, W. S. (2017). Pupillary responses as a biomarker of early risk for Alzheimer’s disease. Journal of Alzheimer’s Disease, 56(4), 1419–1428. https://doi.org/10.3233/JAD-161078
  • Helmy, A., Kirkpatrick, P. J., Seeley, H. M., Corteen, E., Menon, D. K., & Hutchinson, P. J. (2012). Fixed, dilated pupils following traumatic brain injury: Historical perspectives, causes and ophthalmological sequelae. Springer.
  • Hershaw, J. N., & Ettenhofer, M. L. (2018). Insights into cognitive pupillometry: Evaluation of the utility of pupillary metrics for assessing cognitive load in normative and clinical samples. International Journal of Psychophysiology, 134, 62–78. https://doi.org/10.1016/j.ijpsycho.2018.10.008
  • Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190–1192. https://doi.org/10.1126/science.143.3611.1190
  • Hoeks, B., & Levelt, W. J. (1993). Pupillary dilation as a measure of attention: A quantitative system analysis. Behavior Research Methods Instruments & Computers, 25(1), 16–26. https://doi.org/10.3758/BF03204445
  • Irimia, A., Goh, S.-Y. M., Torgerson, C. M., Stein, N. R., Chambers, M. C., Vespa, P. M., & Van Horn, J. D. (2013). Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clinical Neurology and Neurosurgery, 115(10), 2159–2165. https://doi.org/10.1016/j.clineuro.2013.08.003
  • Iverson, G. L., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2016). Concussion history in adolescent athletes with attention-deficit hyperactivity disorder. Journal of Neurotrauma, 33(23), 2077–2080. https://doi.org/10.1089/neu.2014.3424
  • James, S. L., Theadom, A., Ellenbogen, R. G., Bannick, M. S., Montjoy-Venning, W., Lucchesi, L. R., & Adsuar, J. C. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the global burden of disease study 2016. The Lancet Neurology 18(1), 56–87.
  • Jonides, J., & Mack, R. (1984). On the cost and benefit of cost and benefit. Psychological Bulletin, 96(1), 29. https://doi.org/10.1037/0033-2909.96.1.29
  • Karatekin, C., Bingham, C., & White, T. (2009). Regulation of cognitive resources during an n-back task in youth-onset psychosis and Attention-Deficit/Hyperactivity Disorder (ADHD). International Journal of Psychophysiology, 73(3), 294–307. https://doi.org/10.1016/j.ijpsycho.2009.05.001
  • Kessler, R. C., Adler, L., Ames, M., Demler, O., Faraone, S., Hiripi, E., & Spencer, T. (2005). The World Health Organization adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychological Medicine, 35(2), 245–256. https://doi.org/10.1017/S0033291704002892
  • Koelewijn, T., de Kluiver, H., Shinn-Cunningham, B. G., Zekveld, A. A., & Kramer, S. E. (2015). The pupil response reveals increased listening effort when it is difficult to focus attention. Hearing Research, 323, 81–90. https://doi.org/10.1016/j.heares.2015.02.004
  • Koelewijn, T., Shinn-Cunningham, B. G., Zekveld, A. A., & Kramer, S. E. (2014). The pupil response is sensitive to divided attention during speech processing. Hearing Research, 312, 114–120. https://doi.org/10.1016/j.heares.2014.03.010
  • Kramer, M. E., Chiu, C.-Y. P., Walz, N. C., Holland, S. K., Yuan, W., Karunanayaka, P., & Wade, S. L. (2008). Long-term neural processing of attention following early childhood traumatic brain injury: fMRI and neurobehavioral outcomes. Journal of the International Neuropsychological Society, 14(3), 424–435. https://doi.org/10.1017/S1355617708080545
  • Krivitzky, L. S., Roebuck-Spencer, T. M., Roth, R. M., Blackstone, K., Johnson, C. P., & Gioia, G. (2011). Functional magnetic resonance imaging of working memory and response inhibition in children with mild traumatic brain injury. Journal of the International Neuropsychological Society, 17(6), 1143–1152. https://doi.org/10.1017/S1355617711001226
  • Landgraf, S., Van der Meer, E., & Krueger, F. (2010). Cognitive resource allocation for neural activity underlying mathematical cognition: A multi-method study. Zdm, 42(6), 579–590. https://doi.org/10.1007/s11858-010-0264-7
  • Lasaponara, S., Fortunato, G., Conversi, D., Pellegrino, M., Pinto, M., Collins, D. L., & Doricchi, F. (2021). Pupil dilation during orienting of attention and conscious detection of visual targets in patients with left spatial neglect. Cortex, 134, 265–277. https://doi.org/10.1016/j.cortex.2020.10.021
  • Lasaponara, S., Fortunato, G., Dragone, A., Pellegrino, M., Marson, F., Silvetti, M., & Doricchi, F. (2019). Expectancy modulates pupil size both during endogenous orienting and during re‐orienting of spatial attention: A study with isoluminant stimuli. The European Journal of Neuroscience, 50(5), 2893–2904. https://doi.org/10.1111/ejn.14391
  • Latip, L. A., Alias, N. A., Ariff, A., Shuaib, I., Abdullah, J., & Naing, N. (2004). CT scan in minor head injury: A guide for rural doctors. Journal of Clinical Neuroscience, 11(8), 835–839. https://doi.org/10.1016/j.jocn.2003.12.017
  • Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339. https://doi.org/10.1037/0096-3445.133.3.339
  • Maietta, J. E., Renn, B. N., Goodwin, G. J., Maietta, L. N., Moore, S. A., Hopkins, N. A., & Allen, D. N. (2022). A systematic review and meta-analysis of factors influencing ImPACT concussion testing in high school and collegiate athletes with self-reported ADHD and/or LD. Neuropsychology, 37(2), 113–132. https://doi.org/10.1037/neu0000870
  • Mani, R., Asper, L., Arunachalam, V., & Khuu, S. K. (2023). The impact of traumatic brain injury on inhibitory control processes assessed using a delayed antisaccade task. Neuroscience Letters, 797, 137081. https://doi.org/10.1016/j.neulet.2023.137081
  • Mani, R., Asper, L., & Khuu, S. K. (2018). Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: A systematic review and meta-analysis. Brain Injury, 32(11), 1315–1336. https://doi.org/10.1080/02699052.2018.1483030
  • Mannaru, P., Balasingam, B., Pattipati, K., Sibley, C., & Coyne, J. T. (2017). Performance evaluation of the gazepoint GP3 eye tracking device based on pupil dilation. In Augmented Cognition. Neurocognition and Machine Learning: 11th International Conference, AC 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, (pp. 166–175). Springer International Publishing. https://doi.org/10.1007/978-3-319-58628-1_14
  • Mathias, J., Bowden, S. C., Bigler, E., & Rosenfeld, J. V. (2007). Is performance on the Wechsler test of adult reading affected by traumatic brain injury? British Journal of Clinical Psychology, 46(4), 457–466. https://doi.org/10.1348/014466507X190197
  • Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2015). The pupillary light response reflects eye-movement preparation. Journal of Experimental Psychology Human Perception and Performance, 41(1), 28. https://doi.org/10.1037/a0038653
  • Mathworks, C.(2018). User’s guide R2018B.
  • Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., & Yeo, R. A. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Human Brain Mapping, 30(12), 4152–4166. https://doi.org/10.1002/hbm.20836
  • Minassian, A., Granholm, E., Verney, S., & Perry, W. (2004). Pupillary dilation to simple vs. complex tasks and its relationship to thought disturbance in schizophrenia patients. International Journal of Psychophysiology, 52(1), 53–62. https://doi.org/10.1016/j.ijpsycho.2003.12.008
  • Nguyen, R., Fiest, K. M., McChesney, J., Kwon, C.-S., Jette, N., Frolkis, A. D., & Atta, C. (2016). The international incidence of traumatic brain injury: A systematic review and meta-analysis. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 43(6), 774–785. https://doi.org/10.1017/cjn.2016.290
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vis, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
  • Porter, G., Leonards, U., Wilcock, G., Haworth, J., Troscianko, T., & Tales, A. (2010). New insights into feature and conjunction search: II. Evidence from Alzheimer’s disease. Cortex, 46(5), 637–649. https://doi.org/10.1016/j.cortex.2009.04.014
  • Porter, G., Troscianko, T., & Gilchrist, I. D. (2007). Effort during visual search and counting: Insights from pupillometry. The Quarterly Journal of Experimental Psychology, 60(2), 211–229. https://doi.org/10.1080/17470210600673818
  • Purkayastha, S., Stokes, M., & Bell, K. R. (2019). Autonomic nervous system dysfunction in mild traumatic brain injury: A review of related pathophysiology and symptoms. Brain Injury, 33(9), 1129–1136. https://doi.org/10.1080/02699052.2019.1631488
  • Ryan, L. M., & Warden, D. L. (2003). Post concussion syndrome. International Review of Psychiatry, 15(4), 310–316. https://doi.org/10.1080/09540260310001606692
  • Schmitt, S., & Dichter, M. A. (2015). Electrophysiologic recordings in traumatic brain injury. Handbook of Clinical Neurology, 127, 319–339. https://doi.org/10.1016/B978-0-444-52892-6.00021-0
  • Smith, S. T. J. P. A. (2017). Postconcussion syndrome: An overview for clinicians. Psychiatric Annals, 47(2), 77–82. https://doi.org/10.3928/00485713-20161222-01
  • Tapper, A., Gonzalez, D., Nouredanesh, M., & Niechwiej-Szwedo, E. (2021). Pupillometry provides a psychophysiological index of arousal level and cognitive effort during the performance of a visual-auditory dual-task in individuals with a history of concussion. Vision Research, 184, 43–51. https://doi.org/10.1016/j.visres.2021.03.011
  • Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, 304(7872), 81–84. https://doi.org/10.1016/S0140-6736(74)91639-0
  • Thaler, N. S., Bello, D. T., Randall, C., Goldstein, G., Mayfield, J., & Allen, D. N. (2010). IQ profiles are associated with differences in behavioral functioning following pediatric traumatic brain injury. Archives of Clinical Neuropsychology, 25(8), 781–790. https://doi.org/10.1093/arclin/acq073
  • Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23(4), 429–440. https://doi.org/10.1068/p230429
  • Thiagarajan, P., Ciuffreda, K. K., & Theis, J. (2022). Accommodative and pupillary dysfunctions in concussion/mild traumatic brain injury: A review. NeuroRehabilitation, 50(3), 1–18. https://doi.org/10.3233/NRE-228011
  • Unsworth, N., Robison, M. K. J. P. B., & Review. (2015). Individual differences in the allocation of attention to items in working memory: Evidence from pupillometry. Psychonomic Bulletin & Review, 22(3), 757–765. https://doi.org/10.3758/s13423-014-0747-6
  • Upadhyay, D. (2008). Cognitive functioning in TBI patients: A review of literature. Middle-East Journal of Scientific Research, 3(3), 120–125. https://doi.org/10.1080/09540260310001606728
  • Van Der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., & Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158–169. https://doi.org/10.1111/j.1469-8986.2009.00884.x
  • Vos, P. E., Alekseenko, Y., Battistin, L., Ehler, E., Gerstenbrand, F., Muresanu, D. F., & Vécsei, L. (2012). Mild traumatic brain injury. European Journal of Neurology, 19(2), 191–198. https://doi.org/10.1111/j.1468-1331.2011.03581.x
  • Wahn, B., Ferris, D. P., Hairston, W. D., & König, P. (2016). Pupil sizes scale with attentional load and task experience in a multiple object tracking task. PloS One, 11(12), e0168087. https://doi.org/10.1371/journal.pone.0168087
  • Walle, K. M., Nordvik, J. E., Espeseth, T., Becker, F., & Laeng, B. (2019). Multiple object tracking and pupillometry reveal deficits in both selective and intensive attention in unilateral spatial neglect. Journal of Clinical Experimental Neuropsychology, 41(3), 270–289. https://doi.org/10.1080/13803395.2018.1536735
  • Walz, J. A., Mani, R., Alnawmasi, M. M., & Khuu, S. K. (2021). Visuospatial attention allocation as an indicator of cognitive deficit in traumatic brain injury: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 15, 402. https://doi.org/10.3389/fnhum.2021.675376
  • Walz, J. A., Mani, R., Alnawmasi, M. M., and Khuu, S. K. (2021). Visuospatial Attention Allocation as an Indicator of Cognitive Deficit in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.67537610.3389/fnhum.2021.675376.s00110.3389/fnhum.2021.675376.s002
  • Wang, C.-A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Current Opinion in Neurobiology, 33, 134–140. https://doi.org/10.1016/j.conb.2015.03.018
  • Winn, M. B. (2016). Rapid release from listening effort resulting from semantic context, and effects of spectral degradation and cochlear implants. Trends in Hearing, 20, 2331216516669723. https://doi.org/10.1177/2331216516669723
  • Xu, B., Sandrini, M., Levy, S., Volochayev, R., Awosika, O., Butman, J. A., & Cohen, L. G. (2017). Lasting deficit in inhibitory control with mild traumatic brain injury. Scientific Reports, 7(1), 14902. https://doi.org/10.1038/s41598-017-14867-y
  • Yadav, N. K., & Ciuffreda, K. J. (2014). Objective assessment of visual attention in mild traumatic brain injury (mTBI) using Visual-Evoked Potentials (VEP). Brain Injury, 29(3), 352–365. https://doi.org/10.3109/02699052.2014.979229
  • Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology, 51(3), 277–284. https://doi.org/10.1111/psyp.12151
  • Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful listening: The influence of sentence intelligibility. Ear and Hearing, 31(4), 480–490. https://doi.org/10.1097/AUD.0b013e3181d4f251
  • Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech perception in noise: The influence of age, hearing loss, and cognition on the pupil response. Ear Hearing Research, 32(4), 498–510. https://doi.org/10.1097/AUD.0b013e31820512bb

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.