Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 129, 2023 - Issue 1
160
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thymoquinone and quercetin protect against hepatic steatosis in association with SIRT1/AMPK stimulation and regulation of autophagy, perilipin-2, and cytosolic lipases

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 268-281 | Received 25 Apr 2022, Accepted 04 Oct 2022, Published online: 20 Oct 2022

References

  • Ashour, H., et al., 2019. Combined gemfibrozil (peroxisome proliferator-activated receptor alpha agonist) with reduced steroid dose gives a similar management picture as the full steroid dose in a rat adjuvant-induced arthritis model. Modern rheumatology, 29 (4), 602–611. https://doi.org/10.1080/14397595.2018.1508800
  • Atef, Y., et al., 2017. Quercetin and tin protoporphyrin attenuate hepatic ischemia reperfusion injury: role of HO-1. Naunyn-schmiedeberg’s archives of pharmacology, 390 (9), 871–881. https://doi.org/10.1007/s00210-017-1389-9
  • Attia, A., et al., 2010. Attenuation of high cholesterol-induced oxidative stress in rabbit liver by thymoquinone. European journal of gastroenterology & hepatology, 22, 826–834. https://doi.org/10.1097/MEG.0b013e328336000d
  • Awad, A.S.M., et al., 2016. Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-schmiedeberg’s archives of pharmacology, 389 (4), 381–391. https://doi.org/10.1007/s00210-015-1207-1
  • Bai, T., et al., 2014b. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1-AMPK signaling pathway in mice. International immunopharmacology, 19 (2), 351–357. https://doi.org/10.1016/j.intimp.2014.02.006
  • Bai, T., et al., 2014a. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1–AMPK signaling pathway in mice. International immunopharmacology, 19 (2), 351–357. https://doi.org/10.1016/j.intimp.2014.02.006
  • Cantó, C., et al., 2009. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature, 458 (7241), 1056–1060. https://doi.org/10.1038/nature07813
  • Carling, D., 2017. AMPK signalling in health and disease. Current opinion in cell biology, 45, 31–37. https://doi.org/10.1016/j.ceb.2017.01.005
  • Chan, S.T., et al., 2014. Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo. BioMed research international, 2014, 580626. https://doi.org/10.1155/2014/580626
  • Chen, L., et al., 2020. Quercetin and isoquercitrin inhibiting hepatic gluconeogenesis through lkb1-ampkα pathway. Acta endocrinologica (Bucharest), 16 (1), 9–14. https://doi.org/10.4183/aeb.2020.9
  • Chen, Q., et al., 2017. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients, 9 (2), 96. https://doi.org/10.3390/nu9020096
  • Chen, X., et al., 2005. Pharmacokinetics and modeling of quercetin and metabolites. Pharmaceutical research, 22, 892–901. https://doi.org/10.1007/s11095-005-4584-1
  • Dong, J., et al., 2014. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. Journal of lipid research, 55 (3), 363–374. https://doi.org/10.1194/jlr.M038786
  • Drira, R. and Sakamoto, K., 2014. Hydroxytyrosol stimulates lipolysis via A-kinase and extracellular signal-regulated kinase activation in 3T3-L1 adipocytes. European journal of nutrition, 53 (3), 743–750. https://doi.org/10.1007/s00394-013-0578-7
  • Esrefoglu, M., et al., 2017. Therapeutic effects of melatonin and quercetin in improvement of hepatic steatosis in rats through supression of oxidative damage. Bratislavske lekarske listy, 118 (6), 347–354. https://doi.org/10.4149/BLL_2017_066
  • Farghaly, M.E., et al., 2021. Thymoquinone potentiated the anticancer effect of cisplatin on hepatic tumorigenesis by modulating tissue oxidative stress and endoplasmic GRP78/CHOP signaling. Nutrition and cancer, 74, 278–287. https://doi.org/10.1080/01635581.2021.1879880
  • Ferguson, D., et al., 2017. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus-driven hepatic steatosis. Journal of lipid research, 58 (2), 420–432. https://doi.org/10.1194/jlr.M073734
  • Galindo, P., et al., 2012. Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food & function, 3 (6), 643–650. https://doi.org/10.1039/c2fo10268d
  • Gauthier, M.-S., et al., 2008. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte. The journal of biological chemistry, 283 (24), 16514–16524. https://doi.org/10.1074/jbc.M708177200
  • Geisler, C.E. and Renquist, B.J., 2017. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. The journal of endocrinology, 234 (1), R1–R21. https://doi.org/10.1530/JOE-16-0513
  • Gómez-Zorita, S., et al., 2017. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. Journal of translational medicine, 15, 1–10. https://doi.org/10.1186/s12967-017-1343-0
  • Herms, A., et al., 2015. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature communications, 6, 7176. https://doi.org/10.1038/ncomms8176
  • Hou, X., et al., 2008. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. The journal of biological chemistry, 283 (29), 20015–20026. https://doi.org/10.1074/jbc.M802187200
  • Jung, C.H., et al., 2013. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytotherapy research, 27 (1), 139–143. https://doi.org/10.1002/ptr.4687
  • Kabirifar, R., et al., 2018. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase. Journal of functional foods., 40, 341–348. https://doi.org/10.1016/j.jff.2017.11.020
  • Kajikawa, S., et al., 2009. Highly purified eicosapentaenoic acid prevents the progression of hepatic steatosis by repressing monounsaturated fatty acid synthesis in high-fat/high-sucrose diet-fed mice. Prostaglandins, leukotrienes, and essential fatty acids, 80 (4), 229–238. https://doi.org/10.1016/j.plefa.2009.02.004
  • Karandrea, S., et al., 2017. Thymoquinone ameliorates diabetic phenotype in diet-induced obesity mice via activation of SIRT-1-dependent pathways. PLoS one, 12 (9), e0185374. https://doi.org/10.1371/journal.pone.0185374
  • Kaushik, S. and Cuervo, A.M., 2015. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nature cell biology, 17 (6), 759–770. https://doi.org/10.1038/ncb3166
  • Kim, C.S.S., et al., 2016a. Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching. Nutrition research and practice, 10 (6), 623–628. https://doi.org/10.4162/nrp.2016.10.6.623
  • Kim, D., et al., 2019. Clinical epidemiology of NAFLD, in: clinical epidemiology of chronic liver diseases. Cham, Switzerland: Springer International Publishing, 211–227. https://doi.org/10.1007/978-3-319-94355-8_14
  • Kim, J.H., et al., 2016b. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Applied biological chemistry, 59 (5), 721–728. https://doi.org/10.1007/s13765-016-0217-0
  • Kim, O.Y., et al., 2012. Influence of quercetin-rich onion peel extracts on adipokine expression in the visceral adipose tissue of rats. Phytotherapy research, 26 (3), 432–437. https://doi.org/10.1002/ptr.3570
  • Kim, S.G., Kim, J.R., and Choi, H.C., 2018. Quercetin-induced AMP-activated protein kinase activation attenuates vasoconstriction through LKB1-AMPK signaling pathway. Journal of medicinal food, 21 (2), 146–153. https://doi.org/10.1089/jmf.2017.4052
  • Kim, S. J., et al., 2016c. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Molecular and cellular biology, 36 (14), 1961–1976. https://doi.org/10.1128/MCB.00244-16
  • Kobori, M., et al., 2011. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Molecular nutrition & food research, 55 (4), 530–540. https://doi.org/10.1002/mnfr.201000392
  • Kobori, M., et al., 2016. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Molecular nutrition & food research, 60 (2), 300–312. https://doi.org/10.1002/mnfr.201500595
  • la Fuente, F.P. D., et al., 2019. Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica et biophysica acta molecular and cell biology of lipids, 1864 (12), 158519. https://doi.org/10.1016/j.bbalip.2019.158519
  • Lasa, A., et al., 2012. Resveratrol regulates lipolysis via adipose triglyceride lipase. The journal of nutritional biochemistry, 23 (4), 379–384. https://doi.org/10.1016/j.jnutbio.2010.12.014
  • Li, X., et al., 2018. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in pharmacology, 9, 72. https://doi.org/10.3389/fphar.2018.00072
  • Liu, P., et al., 2018. Frataxin-mediated PINK1–parkin-dependent mitophagy in hepatic steatosis: the protective effects of quercetin. Molecular nutrition & food research, 62 (16), 1800164–11. https://doi.org/10.1002/mnfr.201800164
  • Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods, 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Madushani Herath, K.H.I.N., et al., 2018. Phenolic acid and flavonoid-rich fraction of Sasa quelpaertensis Nakai leaves prevent alcohol induced fatty liver through AMPK activation. Journal of ethnopharmacology, 224, 335–348. https://doi.org/10.1016/j.jep.2018.06.008
  • Maksymchuk, O., et al., 2017. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacological reports, 69 (6), 1386–1392. https://doi.org/10.1016/j.pharep.2017.05.020
  • Noorbakhsh, M.-F., et al., 2018. An overview of hepatoprotective effects of thymoquinone. Recent patents on food, nutrition & agriculture, 9 (1), 14–22. https://doi.org/10.2174/2212798410666180221105503
  • Orlicky, D.J., et al., 2019. Perilipin‐2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra‐hepatocyte actions. The journal of physiology, 597 (6), 1565–1584. https://doi.org/10.1113/JP277140
  • Prabhakar, P., et al., 2015. Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. European journal of nutrition, 54 (7), 1117–1127. https://doi.org/10.1007/s00394-014-0788-7
  • Purushotham, A., et al., 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell metabolism, 9 (4), 327–338. https://doi.org/10.1016/j.cmet.2009.02.006
  • Ruderman, N.B., et al., 2010. AMPK and SIRT1: a long-standing partnership? American journal of physiology endocrinology and metabolism, 298 (4), E751–E760. https://doi.org/10.1152/ajpendo.00745.2009
  • Sanders, M.J., et al., 2007. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. The biochemical journal, 403 (1), 139–148. https://doi.org/10.1042/BJ20061520
  • Sathyanarayan, A., Mashek, M.T., and Mashek, D.G., 2017. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell reports, 19 (1), 1–9. https://doi.org/10.1016/j.celrep.2017.03.026
  • Sedaghat, R., Roghani, M., and Khalili, M., 2014. Neuroprotective effect of thymoquinone, the Nigella Sativa bioactive compound. Iranian journal of pharmaceutical research, 13 (1), 227–234.
  • Seyithanoğlu, M., et al., 2016. The effect of dietary curcumin and capsaicin on hepatic fetuin-A expression and fat accumulation in rats fed on a high-fat diet. Archives of physiology and biochemistry, 122 (2), 94–102. https://doi.org/10.3109/13813455.2015.1120753
  • Shi, Y., et al., 2019. The prevalence of lean/nonobese nonalcoholic fatty liver disease. Journal of clinical gastroenterology, 54, 378–387. https://doi.org/10.1097/MCG.0000000000001270
  • Singh, R. and Cuervo, A.M., 2012. Lipophagy: connecting autophagy and lipid metabolism. International journal of cell biology, 2012, 282041–12. https://doi.org/10.1155/2012/282041
  • Snyder, S.M., et al., 2016. Consumption of quercetin and quercetin-containing apple and cherry extracts affects blood glucose concentration, hepatic metabolism, and gene expression patterns in obese C57BL/6J high fat–fed mice. The journal of nutrition, 146 (5), 1001–1007. https://doi.org/10.3945/jn.115.228817
  • Takahashi, Y. and Fukusato, T., 2014. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World journal of gastroenterology, 20 (42), 15539–15548. https://doi.org/10.3748/wjg.v20.i42.15539
  • Tang, Y., et al., 2012. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food and chemical toxicology, 50, 1194–1200. https://doi.org/10.1016/j.fct.2012.02.008
  • Vissiennon, C., et al., 2012. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin - are they prodrugs? Journal of nutritional biochemistry, 23, 733–740. https://doi.org/10.1016/j.jnutbio.2011.03.017
  • Walther, T.C., Chung, J., and Farese, R.V., 2017. Lipid droplet biogenesis. Annual review of cell and developmental biology, 33, 491–510. https://doi.org/10.1146/annurev-cellbio-100616-060608
  • Wang, M., et al., 2020. Quercetin improving lipid metabolism by regulating lipid metabolism pathway of ileum mucosa in broilers. Oxidative medicine and cellular longevity, 2020, 1–17. https://doi.org/10.1155/2020/8686248
  • Wang, W., et al., 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British journal of pharmacology, 169 (6), 1352–1371. https://doi.org/10.1111/bph.12226
  • Xue, B. and Kahn, B.B., 2006. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. The journal of physiology, 574 (Pt 1), 73–83. https://doi.org/10.1113/jphysiol.2006.113217
  • Yang, H., et al., 2019. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytotherapy research, 33 (12), 3140–3152. https://doi.org/10.1002/ptr.6486
  • Yang, Y., et al., 2016. Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicology letters, 262, 80–91. https://doi.org/10.1016/j.toxlet.2016.09.014
  • Younossi, Z., et al., 2019. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology, 69 (6), 2672–2682. https://doi.org/10.1002/hep.30251
  • Yu, X., et al., 2016. Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy. Nutrients, 8 (1), 27. https://doi.org/10.3390/nu8010027
  • Zeng, H., et al., 2019. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food and chemical toxicology, 125, 21–28. https://doi.org/10.1016/j.fct.2018.12.028
  • Zhu, J., et al., 2019. Phosphorylation of PLIN3 by AMPK promotes dispersion of lipid droplets during starvation. Protein & cell, 10 (5), 382–387. https://doi.org/10.1007/s13238-018-0593-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.