243
Views
5
CrossRef citations to date
0
Altmetric
Research Reports

MicroRNA-related polymorphisms in pseudoexfoliation syndrome, pseudoexfoliative glaucoma, and primary open-angle glaucoma

, , , , , , , , & show all
Pages 603-609 | Received 23 Feb 2018, Accepted 29 Jul 2018, Published online: 27 Aug 2018

References

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.
  • Tham YM, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology. 2014;121:2081–90. doi:10.1016/j.ophtha.2014.05.013.
  • Ritch R. Exfoliation syndrome: the most common identifiable cause of open-angle glaucoma. J Glaucoma. 1994;3:176–77. doi:10.1097/00061198-199400320-00018.
  • Topouzis F, Wilson R, Harris A, Anastasopoulos E, Yu F, Mavroudis L, Pappas T, Koskosas A, Coleman AL. Prevalence of open-angle glaucoma in Greece: the Thessaloniki Eye Study. Am J Ophthalmol. 2007;144:511–19. doi:10.1016/j.ajo.2007.06.029.
  • Founti P, Haidich AB, Chatzikyriakidou A, Salonikiou A, Anastasopoulos E, Pappas T, Lambropoulos A, Viswanathan AC, Topouzis F. Ethnicity-based differences in the association of LOXL1 polymorphisms with pseudoexfoliation/pseudoexfoliative glaucoma: a meta-analysis. Ann Hum Genet. 2015;79:431–50. doi:10.1111/ahg.12128.
  • Sakurada Y, Mabuchi F. Genetic risk factors for glaucoma and exfoliation syndrome identified by genome-wide association studies. CurrNeuropharmacol. 2017 Jul 18. doi:10.2174/1570159X15666170718142406.
  • Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, Igo RP, Haripriya A, Williams SE, Astakhov YS, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49:993–1004. doi:10.1038/ng.3875.
  • Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, Nakano S, Uebe S, Harder JM, Chan AS, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 2015;47:387–92.
  • Aung T, Khor CC. Glaucoma genetics: recent advances and future directions. Asia Pac J Ophthalmol. (Phila). 2016;5:256–59.
  • Sand M, Gambichler T, Sand D, Li Y, Ma H, Zhou Y, Jin Y, Wang H, Bai J, Zhang G, et al. MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci. 2009;53:169–75. doi:10.1016/j.jdermsci.2008.11.002.
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14. doi:10.1038/nrg2290.
  • Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci. 2007;32:189–97. doi:10.1016/j.tibs.2007.02.006.
  • Jayaram H, Phillips JI, Lozano DC, Choe TE, Cepurna WO, Johnson EC, Morrison JC, Gattey DM, Saugstad JA, Keller KE, et al. Comparison of MicroRNA expression in aqueous humor of normal and primary open-angle glaucoma patients using PCR arrays: a pilot study. Invest Ophthalmol Vis Sci. 2017;58:2884–90. doi:10.1167/iovs.17-21844.
  • Li X, Zhao F, Xin M, Li G, Luna C, Li G, Zhou Q, He Y, Yu B, Olson E, et al. Regulation of intraocular pressure by microRNA cluster miR-143/145. Sci Rep. 2017;7:915. doi:10.1038/s41598-017-01003-z.
  • Guo R, Shen W, Su C, Jiang, S, Wang, J. Relationship between the pathogenesis of glaucoma and miRNA. Ophthalmic Res. 2017;57:194–99. doi:10.1159/000450957.
  • Wang Y, Li F, Wang S. MicroRNA‑93 is overexpressed and induces apoptosis in glaucoma trabecular meshwork cells. Mol Med Rep. 2016;14:5746–50. doi:10.3892/mmr.2016.5938.
  • Jayaram H, Cepurna WO, Johnson EC, Morrison, JC. MicroRNA Expression in the Glaucomatous Retina. Invest Ophthalmol Vis Sci. 2015;56:7971–82. doi:10.1167/iovs.15-18088.
  • Medina-Trillo C, Aroca-Aguilar JD, Ferre-Fernández JJ, Méndez-Hernández, C-D, Morales, L, García-Feijoo, J, Escribano, J. The role of hsa-miR-548l dysregulation as a putative modifier factor for glaucoma-associated FOXC1 mutations. Microrna. 2015;4:50–56.
  • Liu Y, Bailey JC, Helwa I, Dismuke WM, Cai J, Drewry M, Brilliant MH, Budenz DL, Christen WG, Chasman DI, et al. A common variant in MIR182 is associated with primary open-angle glaucoma in the NEIGHBORHOOD consortium. Invest Ophthalmol Vis Sci. 2016;57:3974–81. doi:10.1167/iovs.16-19688.
  • Ghanbari M, Iglesias AI, Springelkamp H, Van Duijn, C M, Ikram, M A, Dehghan, A., Erkeland, SJ, Klaver, Caroline CW, Meester-Smoor, MA. International Glaucoma Genetics Consortium (IGGC). A genome-wide scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2017;58:5368–77. doi:10.1167/iovs.17-22410.
  • Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen Hu, Guo A-Y. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database. (Oxford). 2015;2015:bav029. doi:10.1093/database/bav029.
  • Wiggs JL. Glaucoma Genes and Mechanisms. ProgMolBiolTransl Sci. 2015;134:315–42.
  • Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3ʹUTRs of human genes. BMC Genomics. 2012;13:44. doi:10.1186/1471-2164-13-44.
  • Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23:1351–75. doi:10.1002/sim.1761.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24. doi:10.1038/nrm3838.
  • Martin-Guerrero I, Gutierrez-Camino A, Lopez-Lopez E, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Ardanaz M, Garcia-Orad A.Genetic variants in miRNA processing genes and pre-miRNAs are associated with the risk of chronic lymphocytic leukemia. PLoS One. 2015;10:e0118905. doi:10.1371/journal.pone.0118905.
  • Saeki M, Watanabe M, Inoue N, Tokiyoshi E, Takuse Y, Arakawa Y, Hidaka Y, Iwatani, Y. DICER and DROSHA gene expression and polymorphisms in autoimmune thyroid diseases. Autoimmunity. 2016;49:514–22. doi:10.1080/08916934.2016.1230846.
  • He J, Zhao J, Zhu W, Qi D, Wang L, Sun J, Wang B, Ma X, Dai Q, Yu X, et al. MicroRNA biogenesis pathway genes polymorphisms and cancer risk: a systematic review and meta-analysis. PeerJ. 2016;4:e2706. doi:10.7717/peerj.2706.
  • Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A. 2016;113:E1881–1889. doi:10.1073/pnas.1602532113.
  • Tanaka Y, Tsuda S, Kunikata H, Sato J, Kokubun T, Yasuda M, Nishiguchi, KM, Inada T, Nakazawa, T. Profiles of extracellular miRNAs in the aqueous humor of glaucoma patients assessed with a microarray system. Sci Rep. 2014;4:5089. doi:10.1038/srep05089.
  • Fardo DW, Becker KD, Bertram L, Tanzi RE, Lange C. Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy-Weinberg equilibrium. Eur J Hum Genet. 2009;17:1676–82. doi:10.1038/ejhg.2009.85.
  • Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104:3300–05. doi:10.1073/pnas.0611347104.
  • Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen S-H. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35:4535–41. doi:10.1093/nar/gkm480.
  • Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. PNAS. 2007;104:3300–05. doi:10.1073/pnas.0611347104.
  • Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nature Genetics. 2006;38:1452–56. doi:10.1038/ng1910.
  • Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005;15:1496–502. doi:10.1101/gr.4107905.
  • Molasy M, Walczak A, Przybyłowska-Sygut K, Zaleska-Żmijewska A, Szaflik J, Szaflik JP, Majsterek I. Analysis of the polymorphic variants of RAN and GEMIN3 genes and risk of Primary Open-Angle Glaucoma in the Polish population. Ophthalmic Genet. 2018;39:180–8.
  • Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1:43–46.
  • Perneger TV. What’s wrong with Bonferroni adjustments? BMJ. 1998;315:1236–38. doi:10.1136/bmj.316.7139.1236.
  • Feise RJ. Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol. 2002;2:8. doi:10.1186/1471-2288-2-8.
  • Althouse AD. Adjust for multiple comparisons? It’s not that simple. Ann Thorac Surg. 2016;101:1644–45. doi:10.1016/j.athoracsur.2015.11.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.