270
Views
5
CrossRef citations to date
0
Altmetric
Case Reports

Novel truncating mutation in CACNA1F in a young male patient diagnosed with optic atrophy

, , , &
Pages 741-748 | Received 12 Apr 2018, Accepted 03 Sep 2018, Published online: 27 Sep 2018

References

  • van Genderen M, Riemslag F, Jorritsma F, Hoeben F, Meire F, Stilma J. The key role of electrophysiology in the diagnosis of visually impaired children. Acta Ophthalmol Scand. 2006;84(6):799–806. doi:10.1111/j.1600-0420.2006.00717.x.
  • Weiss AH, Biersdorf WR. Visual sensory disorders in congenital nystagmus. Ophthalmology. 1989;96(4):517–23.
  • Koenekoop RK, Lopez I, den Hollander AI, Allikmets R, Cremers FPM. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions. Clin Exp Ophthalmol. 2007;35(5):473–85. doi:10.1111/j.1442-9071.2007.01534.x.
  • Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986;104(7):1013–20.
  • Koh AH, Hogg CR, Holder GE. The incidence of negative ERG in clinical practice. Doc Ophthalmol. 2001;102(1):19–30.
  • Apkarian P, Reits D, Spekreijse H. Component specificity in albino VEP asymmetry: maturation of the visual pathway anomaly. Exp Brain Res. 1984;53(2):285–94.
  • Tremblay F, Parkinson JE. Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Ophthalmol. 2003;107(3):271–79.
  • Fulton AB, Hansen RM, Westall CA. Development of ERG responses: the ISCEV rod, maximal and cone responses in normal subjects. Doc Ophthalmol. 2003;107(3):235–41.
  • Westall CA, Panton CM, Levin AV. Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol. 1998;96(4):355–79.
  • Audo I, Bujakowska KM, Leveillard T, Mohand-Saïd S, Lancelot ME, Germain A, Antonio A, Michiels C, Saraiva JP, Letexier M, et al. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis. 2012;7:8. doi: 10.1186/1750-1172-7-8.
  • Huang X, Xiao X, Jia X, Li S, Li M, Guo X, Liu X, Zhang Q. Mutation analysis of the genes associated with anterior segment dysgenesis, microcornea and microphthalmia in 257 patients with glaucoma. Int J Mol Med. 2015;36(4):1111–17. doi:10.3892/ijmm.2015.2325.
  • Prokudin I, Simons C, Grigg JR, Storen R, Kumar V, Phua ZY, Smith J, Flaherty M, Davila S, Jamieson RV. Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet. 2014;22(7):907–15. doi:10.1038/ejhg.2013.268.
  • McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12. doi:10.1007/s10633-014-9473-7.
  • Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol. 2010;120(1):111–19. doi:10.1007/s10633-009-9195-4.
  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603.
  • Allen LE, Zito I, Bradshaw K, Patel RJ, Bird AC, Fitzke F, Yates JR, Trump D, Hardcastle AJ, Moore AT. Genotype-phenotype correlation in British families with X linked congenital stationary night blindness. Br J Ophthalmol. 2003;87(11):1413–20.
  • Morgans CW, Bayley PR, Oesch NW, Ren G, Akileswaran L, Taylor WR. Photoreceptor calcium channels: insight from night blindness. Vis Neurosci. 2005;22(5):561–68. doi:10.1017/S0952523805225038.
  • Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, Wutz K, Gutwillinger N, Rüther K, Drescher B, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19(3):260–63. doi:10.1038/940.
  • Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi:10.1146/annurev.bi.64.070195.002425.
  • Zhou Q, Cheng J, Yang W, Tania M, Wang H, Khan MA, Duan C, Zhu L, Chen R, Lv H, et al. Identification of a novel heterozygous missense mutation in the CACNA1F gene in a Chinese family with retinitis pigmentosa by next generation sequencing. Biomed Res Int. 2015;2015:907827. doi:10.1155/2015/907827.
  • Thomas MG, Kumar A, Mohammad S, Proudlock FA, Engle EC, Andrews C, Chan W-M, Thomas S, Gottlob I. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology. 2011;118(8):1653–60. doi:10.1016/j.ophtha.2011.01.028.
  • Hove MN, Kilic-Biyik KZ, Trotter A, Grønskov K, Sander B, Larsen M, Carroll J, Bech-Hansen T, Rosenberg T. Clinical characteristics, mutation spectrum, and prevalence of Aland eye disease/incomplete congenital stationary night blindness in Denmark. Invest Ophthalmol Vis Sci. 2016;57(15):6861–69. doi:10.1167/iovs.16-19445.
  • Heckenlively JR, Martin DA, Rosenbaum AL. Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am J Ophthalmol. 1983;96(4):526–34.
  • Miyake Y, Horiguchi M, Ota I, Shiroyama N. Characteristic ERG-flicker anomaly in incomplete congenital stationary night blindness. Invest Ophthalmol Vis Sci. 1987;28(11):1816–23.
  • Nakamura M, Ito S, Terasaki H, Miyake Y. Novel CACNA1F mutations in Japanese patients with incomplete congenital stationary night blindness. Invest Ophthalmol Vis Sci. 2001;42(7):1610–16.
  • Bijveld MMC, Florijn RJ, Bergen AAB, van Den Born LI, Kamermans M, Prick L, Riemslag FCC, van Schooneveld MJ, Kappers AML, van Genderen MM. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120(10):2072–81. doi:10.1016/j.ophtha.2013.03.002.
  • Rosenberg T, Schwartz M, Simonsen SE. Aland eye disease (Forsius-Eriksson-Miyake syndrome) with probability established in a Danish family. Acta Ophthalmol (Copenh). 1990;68(3):281–91.
  • Nakamura M, Ito S, Piao C-H, Terasaki H, Miyake Y. Retinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family. Arch Ophthalmol. 2003;121(7):1028–33. doi:10.1001/archopht.121.7.1028.
  • Hope CI, Sharp DM, Hemara-Wahanui A, Sissingh JI, Lundon P, Mitchell EA, Maw MA, Clover GM. Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clin Exp Ophthalmol. 2005;33(2):129–36. doi:10.1111/j.1442-9071.2005.00987.x.
  • Hauke J, Schild A, Neugebauer A, Lappa A, Fricke J, Fauser S, Rösler S, Pannes A, Zarrinnam D, Altmüller J, et al. A novel large in-frame deletion within the CACNA1F gene associates with a cone-rod dystrophy 3-like phenotype. PLoS One. 2013;8(10):e76414. doi:10.1371/journal.pone.0076414.
  • Mäntyjärvi M, Nurmenniemi P, Partanen J, Myöhänen T, Peippo M, Alitalo T. Clinical features and a follow-up study in a family with X-linked progressive cone-rod dystrophy. Acta Ophthalmol Scand. 2001;79(4):359–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.