457
Views
7
CrossRef citations to date
0
Altmetric
Research Reports

Exploring microperimetry and autofluorescence endpoints for monitoring disease progression in PRPF31-associated retinopathy

ORCID Icon, , , , , , , , , , ORCID Icon, , , & show all
Pages 1-14 | Received 04 Jul 2020, Accepted 10 Sep 2020, Published online: 27 Sep 2020

References

  • Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, Choi W, Sheplock R, Swider M, Kosyk MS, et al. Outcome measures for clinical trials of leber congenital amaurosis caused by the intronic mutation in the CEP290 gene. Invest Ophthalmol Vis Sci. 2017;58(5):2609–22. doi:10.1167/iovs.17-21560.
  • Mathijssen IB, Florijn RJ, van den Born LI, Zekveld-Vroon RC, Ten Brink JB, Plomp AS, Baas F, Meijers-Heijboer H, Bergen AA, van Schooneveld MJ. Long-term follow-up of patients with retinitis pigmentosa type 12 caused by CRB1 mutations: a severe phenotype with considerable interindividual variability. Retina. 2017;37(1):161–72. doi:10.1097/iae.0000000000001127.
  • Zhang L, Sun Z, Zhao P, Huang L, Xu M, Yang Y, Chen X, Lu F, Zhang X, Wang H, et al. Whole exome sequencing revealed HKDC1 as a candidate gene associated with autosomal-recessive retinitis pigmentosa. Hum Mol Genet. 2018;27:4157–68.
  • Calzetti G, Levy RA, Cideciyan AV, Garafalo AV, Roman AJ, Sumaroka A, Charng J, Heon E, Jacobson SG. Efficacy outcome measures for clinical trials of USH2A caused by the common c. 2299delG mutation. Am J Ophthalmol. 2018;193:114–29. doi:10.1016/j.ajo.2018.06.017.
  • Kiser K, Webb-Jones KD, Bowne SJ, Sullivan LS, Daiger SP, Birch DG. Time course of disease progression of PRPF31-mediated retinitis pigmentosa. Am J Ophthalmol. 2019;200:76–84. doi:10.1016/j.ajo.2018.12.009.
  • Hafler BP, Comander J, Weigel DiFranco C, Place EM, Pierce EA.Course of ocular function in PRPF31 retinitis pigmentosa. Semin Ophthalmol. 2016;31(1–2):49–52. doi:10.3109/08820538.2015.1114856.
  • Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell. 2001;8(2):375–81. doi:10.1016/S1097-2765(01)00305-7.
  • Martin-Merida I, Aguilera-Garcia D, Jose PF-S, Blanco-Kelly F, Zurita O, Almoguera B, Garcia-Sandoval B, Avila-Fernandez A, Arteche A, Minguez P, et al. Toward the mutational landscape of autosomal dominant retinitis pigmentosa: a comprehensive analysis of 258 spanish families. Invest Ophthalmol Vis Sci. 2018;59(6):2345–54. doi:10.1167/iovs.18-23854.
  • Van Cauwenbergh C, Coppieters F, Roels D, De Jaegere S, Flipts H, De Zaeytijd J, Walraedt S, Claes C, Fransen E, Van Camp G, et al. Mutations in splicing factor genes are a major cause of autosomal dominant retinitis pigmentosa in belgian families. PLoS One. 2017;12(1):e0170038. doi:10.1371/journal.pone.0170038.
  • Sato H, Wada Y, Itabashi T, Nakamura M, Kawamura M, Tamai M. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa. Am J Ophthalmol. 2005;140(3):537–40. doi:10.1016/j.ajo.2005.02.050.
  • Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA, Garcia CA, Ruiz RS, Blanton SH, Northrup H, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci. 2006;47(7):3052–64. doi:10.1167/iovs.05-1443.
  • Bhatia S, Goyal S, Singh IR, Singh D, Vanita V. A novel mutation in the PRPF31 in a North Indian adRP family with incomplete penetrance. Doc Ophthalmol. 2018;137(2):103–19. doi:10.1007/s10633-018-9654-x.
  • Bryant L, Lozynska O, Marsh A, Papp TE, van Gorder L, Serrano LW, Gai X, Maguire AM, Aleman TS, Bennett J. Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing: a case report. Br J Ophthalmol. 2018;103:761–67. doi:10.1136/bjophthalmol-2017-311405.
  • Wu Z, Zhong M, Li M, Huang H, Liao J, Li A, Guo K, Ma N, Lin J, Duan J, et al. Mutation analysis of pre-mRNA splicing genes in chinese families with autosomal dominant retinitis pigmentosa. Curr Mol Med. 2018;18:287–94.
  • Yang Y, Tian D, Lee J, Zeng J, Zhang H, Chen S, Guo H, Xiong Z, Xia K, Hu Z, et al. Clinical and genetic identification of a large chinese family with autosomal dominant retinitis pigmentosa. Ophthalmic Genet. 2015;36(1):64–69. doi:10.3109/13816810.2013.809458.
  • Xu F, Sui R, Liang X, Li H, Jiang R, Dong F. Novel PRPF31 mutations associated with Chinese autosomal dominant retinitis pigmentosa patients. Mol Vis. 2012;18:3021–xxx.
  • Evans K, al-Maghtheh M, Fitzke FW, Moore AT, Jay M, Inglehearn CF, Arden GB, Bird AC. Bimodal expressivity in dominant retinitis pigmentosa genetically linked to chromosome 19q. Br J Ophthalmol. 1995;79(9):841–46. doi:10.1136/bjo.79.9.841.
  • Lu F, Huang L, Lei C, Sha G, Zheng H, Liu X, Yang J, Shi Y, Lin Y, Gong B, et al. A novel PRPF31 mutation in a large Chinese family with autosomal dominant retinitis pigmentosa and macular degeneration. PLoS One. 2013;8(11):e78274. doi:10.1371/journal.pone.0078274.
  • Yang L, Yin X, Wu L, Chen N, Zhang H, Li G, Ma Z. Targeted exome capture and sequencing identifies novel PRPF31 mutations in autosomal dominant retinitis pigmentosa in Chinese families. BMJ Open. 2013;3(11):e004030. doi:10.1136/bmjopen-2013-004030.
  • Abu-Safieh L, Vithana EN, Mantel I, Holder GE, Pelosini L, Bird AC, Bhattacharya SS. A large deletion in the adRP gene PRPF31: evidence that haploinsufficiency is the cause of disease. Mol Vis. 2006;12:384–88.
  • Wakabayashi T, Sawa M, Gomi F, Tsujikawa M. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol. 2010;88(5):e177–83. doi:10.1111/j.1755-3768.2010.01926.x.
  • Igarashi N, Matsuura M, Hashimoto Y, Hirasawa K, Murata H, Inoue T, Ryo O, Aihara M, Asaoka R. Assessing visual fields in patients with retinitis pigmentosa using a novel microperimeter with eye tracking: the MP-3. PLoS One. 2016;11(11):e0166666. doi:10.1371/journal.pone.0166666.
  • McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12. doi:10.1007/s10633-014-9473-7.
  • Ramachandran R, Cai XC, Lee D, Epstein BC, Locke KG, Birch DG, Hood DC. Reliability of a manual procedure for marking the EZ endpoint location in patients with retinitis pigmentosa. Transl Vis Sci Technol. 2016;5(3):6. doi:10.1167/tvst.5.3.6.
  • De Roach JN, McLaren TL, Paterson RL, O’Brien EC, Hoffmann L, Mackey DA, Hewitt AW, Lamey TM. Establishment and evolution of the Australian inherited retinal disease register and DNA bank. Clin Exp Ophthalmol. 2013;41(5):476–83. doi:10.1111/ceo.12020.
  • Chiang JP, Lamey T, McLaren T, Thompson JA, Montgomery H, De Roach J. Progress and prospects of next-generation sequencing testing for inherited retinal dystrophy. Expert Rev Mol Diagn. 2015;15(10):1269–75. doi:10.1586/14737159.2015.1081057.
  • den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15(1):7–12. doi:10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N.
  • Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Meth. 2010;7(8):575–76. doi:http://www.nature.com/nmeth/journal/v7/n8/abs/nmeth0810-575.html#supplementary-information.
  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv. 2019;531210.
  • Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, Lyon E, Ward BE; Molecular Subcommittee of the ALQAC. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10(4):294–300. doi:10.1097/GIM.0b013e31816b5cae.
  • Jarvik GP, Browning BL. Consideration of cosegregation in the pathogenicity classification of genomic variants. Am J Hum Genet. 2016;98(6):1077–81. doi:10.1016/j.ajhg.2016.04.003.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24. doi:10.1038/gim.2015.30.
  • Audo I, Bujakowska K, Mohand-Said S, Lancelot ME, Moskova-Doumanova V, Waseem NH, Antonio A, Sahel JA, Bhattacharya SS, Zeitz C. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC Med Genet. 2010;11:145. doi:10.1186/1471-2350-11-145.
  • Rose AM, Bhattacharya SS. Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin Genet. 2016;90(2):118–26. doi:10.1111/cge.12758.
  • Frio TR, Wade NM, Ransijn A, Berson EL, Beckmann JS, Rivolta C.Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J Clin Invest. 2008;118(4):1519–31. doi:10.1172/JCI34211.
  • Chune V. Apport du séquençage haut débit dans le diagnostic moléculaire de rétinites pigmentaires autosomiques dominantes et liées à l’X: comparaison de quatre stratégies diagnostiques, in Faculte De Medecine. Université Lille 2 Droit Et Santé; 2017.
  • Saini S, Robinson PN, Singh JR, Vanita V. A novel 7 bp deletion in PRPF31 associated with autosomal dominant retinitis pigmentosa with incomplete penetrance in an Indian family. Exp Eye Res. 2012;104:82–88. doi:10.1016/j.exer.2012.09.010.
  • Villanueva A, Willer JR, Bryois J, Dermitzakis ET, Katsanis N, Davis EE. Whole exome sequencing of a dominant retinitis pigmentosa family identifies a novel deletion in PRPF31. Invest Ophthalmol Vis Sci. 2014;55(4):2121–29. doi:10.1167/iovs.13-13827.
  • Waseem NH, Vaclavik V, Webster A, Jenkins SA, Bird AC, Bhattacharya SS. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2007;48(3):1330–34. doi:10.1167/iovs.06-0963.
  • Lim KP, Yip SP, Cheung SC, Leung KW, Lam ST, To CH. Novel PRPF31 and PRPH2 mutations and co-occurrence of PRPF31 and RHO mutations in Chinese patients with retinitis pigmentosa. Arch Ophthalmol. 2009;127(6):784–90. doi:10.1001/archophthalmol.2009.112.
  • Dong B, Chen J, Zhang X, Pan Z, Bai F, Li Y. Two novel PRP31 premessenger ribonucleic acid processing factor 31 homolog mutations including a complex insertion-deletion identified in Chinese families with retinitis pigmentosa. Mol Vis. 2013;19:2426–35.
  • Xiao X, Cao Y, Zhang Z, Xu Y, Zheng Y, Chen LJ, Pang CP, Chen H. Novel mutations in PRPF31 causing retinitis pigmentosa identified using whole-exome sequencing. Invest Ophthalmol Vis Sci. 2017;58(14):6342–50. doi:10.1167/iovs.17-22952.
  • Utz VM, Beight CD, Marino MJ, Hagstrom SA, Traboulsi EI. Autosomal dominant retinitis pigmentosa secondary to pre-mRNA splicing-factor gene PRPF31 (RP11): review of disease mechanism and report of a family with a novel 3-base pair insertion. Ophthalmic Genet. 2013;34(4):183–88. doi:10.3109/13816810.2012.762932.
  • Sayman Muslubas I, Karacorlu M, Arf S, Hocaoglu M, Ersoz MG. Features of the macula and central visual field and fixation pattern in patients with retinitis pigmentosa. Retina. 2018;38(2):424–31. doi:10.1097/iae.0000000000001532.
  • Moore AT, Fitzke F, Jay M, Arden GB, Inglehearn CF, Keen TJ, Bhattacharya SS, Bird AC. Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiological, psychophysical, and molecular genetic study. Br J Ophthalmol. 1993;77(8):473–79. doi:10.1136/bjo.77.8.473.
  • Takahashi VKL, Takiuti JT, Carvalho-Jr JRL, Xu CL, Duong JK, Mahajan VB, Tsang SH. Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2019;257(4):725–31. doi:10.1007/s00417-018-04234-6.
  • Aizawa S, Mitamura Y, Baba T, Hagiwara A, Ogata K, Yamamoto S. Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (Lond). 2009;23(2):304–08. doi:10.1038/sj.eye.6703076.
  • Trichonas G, Traboulsi EI, Ehlers JP. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa. Ophthalmic Genet. 2017;38(4):320–24. doi:10.1080/13816810.2016.1227450.
  • Iriyama A, Yanagi Y. Fundus autofluorescence and retinal structure as determined by spectral domain optical coherence tomography, and retinal function in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2012;250(3):333–39. doi:10.1007/s00417-011-1823-5.
  • Duncker T, Tabacaru MR, Lee W, Tsang SH, Sparrow JR, Greenstein VC. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54(1):585–91. doi:10.1167/iovs.12-11176.
  • Lima LH, Cella W, Greenstein VC, Wang N-K, Busuioc M, Smith RT, Yannuzzi LA, Tsang SH. Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina. 2009;29(7):1025–31. doi:10.1097/IAE.0b013e3181ac2418.
  • Wong EN, Morgan WH, Chen FK. Intersession test-retest variability of 10-2 MAIA microperimetry in fixation-threatening glaucoma. Clin Ophthalmol. 2017;11:745–52. doi:10.2147/OPTH.S131371.
  • Iftikhar M, Usmani B, Sanyal A, Kherani S, Sodhi S, Bagheri S, Schönbach EM, Junaid N, Scholl HPN, Shah SMA. Progression of retinitis pigmentosa on multimodal imaging: the PREP-1 study. Clin Exp Ophthalmol. 2019;47(5):605–13. doi:10.1111/ceo.13458.
  • Chiba A, Miura G, Baba T, Yamamoto S. Determination of length of interdigitation zone by optical coherence tomography and retinal sensitivity by microperimetry and their relationship to progression of retinitis pigmentosa. Biomed Res Int. 2019;2019:1217270. doi:10.1155/2019/1217270.
  • Sujirakul T, Lin MK, Duong J, Wei Y, Lopez-Pintado S, Tsang SH. Multimodal imaging of central retinal disease progression in a 2-year mean follow-up of retinitis pigmentosa. Am J Ophthalmol. 2015;160(4):786–98.e4. doi:10.1016/j.ajo.2015.06.032.
  • Cabral T, Sengillo JD, Duong JK, Justus S, Boudreault K, Schuerch K, Belfort R Jr., Mahajan VB, Sparrow JR, Tsang SH. Retrospective analysis of structural disease progression in retinitis pigmentosa utilizing multimodal imaging. Sci Rep. 2017;7(1):10347. doi:10.1038/s41598-017-10473-0.
  • Colombo L, Montesano G, Sala B, Patelli F, Maltese P, Abeshi A, Bertelli M, Rossetti L.Comparison of 5-year progression of retinitis pigmentosa involving the posterior pole among siblings by means of SD-OCT: a retrospective study. BMC Ophthalmol. 2018;18(1):153. doi:10.1186/s12886-018-0817-z.
  • Tee JJL, Kalitzeos A, Webster AR, Peto T, Michaelides M. Quantitative analysis of hyperautofluorescent rings to characterize the natural history and progression in RPGR-associated retinopathy. Retina. 2018;38(12):2401–14. doi:10.1097/iae.0000000000001871.
  • Takahashi VKL, Takiuti JT, Jauregui R, Lima LH, Tsang SH. Structural disease progression in PDE6-associated autosomal recessive retinitis pigmentosa. Ophthalmic Genet. 2018;39(5):610–14. doi:10.1080/13816810.2018.1509354.
  • Robson AG, Tufail A, Fitzke F, Bird AC, Moore AT, Holder GE, Webster AR. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina. 2011;31(8):1670–79. doi:10.1097/IAE.0b013e318206d155.
  • Wong EN, De Soyza JDA, Mackey DA, Constable IJ, Chen FK. Intersession test-retest variability of microperimetry in type 2 macular telangiectasia. Transl Vis Sci Technol. 2017;6(6):7–7. doi:10.1167/tvst.6.6.7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.