135
Views
5
CrossRef citations to date
0
Altmetric
Research Reports

The haplotype of the CDKN2B-AS1 gene is associated with primary open-angle glaucoma and pseudoexfoliation glaucoma in the Caucasian population of Central Russia

, , ORCID Icon, &
Pages 698-705 | Received 08 Dec 2020, Accepted 09 Jul 2021, Published online: 13 Aug 2021

References

  • Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y.Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.doi:https://doi.org/10.1016/j.ophtha.2014.05.013.
  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.
  • Grzybowski A, Och M, Kanclerz P, Leffler C, Moraes CG. Primary open angle glaucoma and vascular risk factors: a review of population-based studies from 1990 to 2019. J Clin Med. 2020;9:761.
  • Rasmussen CA, Kaufman PL. The trabecular meshwork in normal eyes and in exfoliation glaucoma. J Glaucoma. 2014;23:S15–9.
  • Ritch R. The management of exfoliative glaucoma. Prog Brain Res. 2008;173:211–24.
  • Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011;93:331–39.
  • Aboobakar IF, Allingham RR. Genetics of exfoliation syndrome and glaucoma. Int Ophthalmol Clin. 2014;54:43–56.
  • Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43:574–78.
  • Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21:2836–42.
  • Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, Imai K, Adachi H, Kageyama M, Mori K, et al. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One. 2012;7(3):e33389.doi:https://doi.org/10.1371/journal.pone.0033389.
  • Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8:e1002654.
  • Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, Law MH, Cremin K, Bailey JNC, Loomis SJ, et al. Common variants near ABCA1,AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet. 2014;10:1120–25.
  • Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, Mani B, Chen LJ, Kee C, Garway-Heath DF, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24:3880–92.
  • Shiga Y, Akiyama M, Nishiguchi KM, Sato K, Shimozawa N, Takahashi A, Momozawa Y, Hirata M, Matsuda K, Yamaji T, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27:1486–96.
  • Ramdas WD, van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA, Isaacs A, Amin N, Aulchenko YS, Wolfs RC, et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010;6:e1000978.
  • Springelkamp H, Höhn R, Mishra A, Hysi PG, Khor CC, Loomis SJ, Bailey JN, Gibson J, Thorleifsson G, Janssen SF, et al. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nat Commun. 2014;5:4883.
  • Springelkamp H, Mishra A, Hysi PG, Gharahkhani P, Höhn R, Khor CC, Cooke Bailey JN, Luo X, Ramdas WD, Vithana E, et al. Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology. Genet Epidemiol. 2015;39:207–16.
  • Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, Nag A, Wang YX, Wang JJ, Cuellar-Partida G, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26:438–53.
  • Pasquale LR, Loomis SJ, Kang JH, Yaspan BL, Abdrabou W, Budenz DL, Chen TC, Delbono E, Friedman DS, Gaasterland D, et al. CDKN2B-AS1 genotype-glaucoma feature correlations in primary open-angle glaucoma patients from the United States. Am J Ophthalmol. 2013;155:342–53.e5).
  • Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 2011;25:444–48.
  • Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371:257–61.
  • Iglesias AI, Springelkamp H, van der Linde H, Severijnen LA, Amin N, Oostra B, Kockx CE, van den Hout MC, Van Ijcken WF, Hofman A, et al. Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age. Hum Mol Genet. 2014;23(5):1320–32. doi:https://doi.org/10.1093/hmg/ddt522.
  • Zode GS, Clark AF, Wordinger RJ. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation. Glia. 2009;57:755–66.
  • Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS. Transforming growth factor beta2 (TGFbeta2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J Biol Chem. 2018;293:9854–68.
  • Schlotzer-Schrehardt U, Lommatzsch J, Kuchle M, Konstas AG, Naumann GO. Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2003;44:1117–25.
  • Litovkina O, Nekipelova E, Dvornyk V, Polonikov A, Efremova O, Zhernakova N, Reshetnikov E, Churnosov M. 2014. Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis. Gene. 546(1):112–16. doi:https://doi.org/10.1016/j.gene.2014.04.020.
  • Moskalenko MI, Milanova SN, Ponomarenko IV, Polonikov AV, Churnosov MI. Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men. Kardiologiia. 2019;59(7S):31–39. (In Russian). doi:https://doi.org/10.18087/cardio.2598.
  • Tikunova E, Ovtcharova V, Reshetnikov E, Dvornyk V, Polonikov A, Bushueva O, Churnosov M. Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia. Int J Ophthalmol. 2017;10:1490–94.
  • Starikova D, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Novel data about association of the functionally significant polymorphisms of the MMP-9 gene with exfoliation glaucoma in the Caucasian population of Central Russia. Ophthalmic Res. 2021;64:458–64. doi:https://doi.org/10.1159/000512507.
  • Eliseeva NV. A replicative study of the associations of polymorphic loci of the LOXL1 and GDKN2B-AS1 genes with the development of primary open-angle glaucoma in men of the central black earth region of the Russian federation. Res Results Biomed. 2020;6(2):198–208. (In Russian). doi:https://doi.org/10.18413/2658-6533-2020-6-2-0-4.
  • Minyaylo O, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Functionally significant polymorphisms of the MMP-9 gene are associated with peptic ulcer disease in the Caucasian population of Central Russia. Sci Rep. 2021;11(1):13515. doi:https://doi.org/10.1038/s41598-021-92527-y
  • Reshetnikov E, Zarudskaya O, Polonikov A, Bushueva O, Orlova V, Krikun E, Dvornyk V, Churnosov M. 2017. Genetic markers for inherited thrombophilia are associated with fetal growth retardation in the population of Central Russia. J Obstet Gynaecol Res. 43(7):1139–44. doi:https://doi.org/10.1111/jog.13329.
  • Ponomarenko I, Reshetnikov E, Polonikov A, Sorokina I, Yermachenko A, Dvornyk V, Churnosov M. Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene. 2020;757:144933. doi:https://doi.org/10.1016/j.gene.2020.144933.
  • Ponomarenko I, Reshetnikov E, Polonikov A, Verzilina I, Sorokina I, Yermachenko A, Dvornyk V, Churnosov M. Candidate genes for age at menarche are associated with uterine leiomyoma. Front Genet. 2021;11:512940. doi:https://doi.org/10.3389/fgene.2020.512940.
  • Chen Y, Hughes G, Chen X, Qian S, Cao W, Wang L, Wang M, Sun X. 2015. Genetic variants associated with different risks for high tension glaucoma and normal tension glaucoma in a Chinese population. Invest Ophthalmol Vis Sci. 56(4):2595–600. doi:https://doi.org/10.1167/iovs.14-16269.
  • Liu Y, Hauser MA, Akafo SK, Qin X, Miura S, Gibson JR, Wheeler J, Gaasterland DE, Challa P, Herndon LW, et al. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Invest Ophthalmol Vis Sci. 2013;54(9):6248–6254. 7. doi:https://doi.org/10.1167/iovs.13-12779.
  • Moschos MM, Dettoraki M, Karekla A, Lamprinakis I, Damaskos C, Gouliopoulos N, Tibilis M, Gazouli M. 2020. Polymorphism analysis of miR182 and CDKN2B genes in Greek patients with primary open angle glaucoma. PLoS One. 15(6):e0233692. doi:https://doi.org/10.1371/journal.pone.0233692.
  • Ramdas WD, van Koolwijk LM, Lemij HG, Pasutto F, Cree AJ, Thorleifsson G, Janssen SF, Jacoline TB, Amin N, Rivadeneira F, et al. Common genetic variants associated with open-angle glaucoma. Hum Mol Genet. 2011;20:2464–71.
  • Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. LOXL1 gene polymorphism candidates for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population from central Russia. Mol Vis. 2021;27:262–69.
  • Reshetnikov EA, Akulova LY, Dobrodomova IS, Dvornyk VY, Polonikov AV, Churnosov MI. 2015. The insertion-deletion polymorphism of the ACE gene is associated with increased blood pressure in women at the end of pregnancy. J Renin Angiotensin Aldosterone Syst. 16(3):623–32. doi:https://doi.org/10.1177/1470320313501217.
  • Chen Z, Qian Q, Ma G, Wang J, Zhang X, Feng Y, Shen C, Yao Y. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–93.
  • Golovchenko O, Abramova M, Ponomarenko I, Reshetnikov E, Aristova I, Polonikov A, Dvornyk V, Churnosov M. Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of Central Russia. Eur J Obstet Gynecol Reprod Biol. 2020;253:52–57. doi:https://doi.org/10.1016/j.ejogrb.2020.07.045.
  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–45.
  • Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS, et al. Functional analysis of the chromosome 9p21.3. Coronary artery disease risk locus . Arterioscler Thromb Vasc Biol. 2009;29:1671–77.
  • Ponomarenko I, Reshetnikov E, Altuchova O, Polonikov A, Sorokina I, Yermachenko A, Dvornyk V, Golovchenko O, Churnosov M. Association of genetic polymorphisms with age at menarche in Russian women. Gene. 2019;686:228–36. doi:https://doi.org/10.1016/j.gene.2018.11.042.
  • Moskalenko M, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. 2021. Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia. Sci Rep. 11(1):5224. doi:https://doi.org/10.1038/s41598-021-84645-4.
  • Ponomarenko I, Reshetnikov E, Polonikov A, Verzilina I, Sorokina I, Elgaeva EE, Tsepilov YA, Yermachenko A, Dvornyk V, Churnosov M. 2020. Candidate genes for age at menarche are associated with endometriosis. Reprod Biomed Online. 41(5):943–56. doi:https://doi.org/10.1016/j.rbmo.2020.04.016.
  • Che R, Jack JR, Motsinger-Reif AA, Brown CC. An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use. BioData Min. 2014;7:9.
  • Burdon KP, Crawford A, Casson RJ, Hewitt AW, Landers J, Danoy P, Mackey DA, Mitchell P, Healey PR, Craig JE. 2012. Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology. 119(8):1539–45. doi:https://doi.org/10.1016/j.ophtha.2012.02.004.
  • Ng SK, Burdon KP, Fitzgerald JT, Zhou T, Fogarty R, Souzeau E, Landers J, Mills RA, Casson RJ, Ridge B, et al. Genetic association at the 9p21 glaucoma locus contributes to sex bias in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2016;57(7):3416–21. doi:https://doi.org/10.1167/iovs.16-19401.
  • Thakur N, Kupani M, Mannan R, Pruthi A, Mehrotra S. 2021. Genetic association between CDKN2B/CDKN2B-AS1 gene polymorphisms with primary glaucoma in a North Indian cohort: an original study and an updated meta-analysis. BMC Med Genomics. 14(1):1. doi:https://doi.org/10.1186/s12920-020-00855-1.
  • Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.
  • Wagner AH, Anand VN, Wang WH, Chatterton JE, Sun D, Shepard AR, Jacobson N, Pang IH, Deluca AP, Casavant TL, et al. Exon-level expression profiling of ocular tissues. Exp Eye Res. 2013;111:105–11.
  • Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.
  • Danford ID, Verkuil LD, Choi DJ, Collins DW, Gudiseva HV, Uyhazi KE, Lau MK, Kanu LN, Grant GR, Chavali VRM, et al. Characterizing the “POAGome”: abioinformatics-driven approach to primary open-angle glaucoma. Prog Retin Eye Res. 2017;58:89‐114.
  • Chen D, Zhang Z, Mao C, Zhou Y, Yu L, Yin Y, Wu S, Mou X, Zhu Y. ANRIL inhibits p15(INK4b) through the TGFbeta1 signaling pathway in human esophageal squamous cell carcinoma. Cell Immunol. 2014;289:91–96.
  • Rathi S, Danford I, Gudiseva HV, Verkuil L, Pistilli M, Vishwakarma S, Kaur I, Dave T, O’Brien JM, Chavali VRM. 2020. Molecular Genetics and Functional Analysis Implicate CDKN2BAS1-CDKN2B Involvement in POAG Pathogenesis. Cells. 9(9):1934. doi:https://doi.org/10.3390/cells9091934.
  • Hu Z, He C. CDKN2B gene rs1063192 polymorphism decreases the risk of glaucoma. Oncotarget. 2017;8:21167–76.
  • Fan BJ, Wang DY, Pasquale LR, Haines JL, Wiggs JL. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Invest Ophthalmol Vis Sci. 2011;52:1788–92.
  • Nunes HF, Ananina G, Costa VP, Zanchin NIT, JPC DV, de Melo MB. Investigation of CAV1/CAV2 rs4236601 and CDKN2B-AS1 rs2157719 in primary open-angle glaucoma patients from Brazil. Ophthalmic Genet. 2018;39:194–99.
  • Micheal S, Ayub H, Khan MI, Bakker B, Schoenmaker-Koller FE, Ali M, Akhtar F, Khan WA, Qamar R, den Hollander AI. Association of known common genetic variants with primary open angle, primary angle closure, and pseudoexfoliation glaucoma in Pakistani cohorts. Mol Vis. 2014;20:1471–79.
  • Dvornyk V, Liu P, Zhang Y, Lei S, Recker R, Deng H.Contribution of genotype and ethnicity to bone mineral density variation in Caucasians and Chinese: a test for five candidate genes for bone mass. Chin Med J (Engl). 2005;118(15):1235–44.
  • Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir A, Jonasdottir A, Stefansdottir G, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–400.
  • Zanon-Moreno V, Zanon-Moreno L, Ortega-Azorin C, Asensio-Marquez EM, Garcia-Medina JJ, Sanz P, Pinazo-Duran MD, Ordovás JM, Corella D. Genetic polymorphism related to exfoliative glaucoma is also associated with primary open-angle glaucoma risk. Clin Exp Ophthalmol. 2015;43:26–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.