146
Views
0
CrossRef citations to date
0
Altmetric
Case Report

Multimodal image alignment aids in the evaluation and monitoring of sector retinitis pigmentosa

& ORCID Icon
Pages 93-102 | Received 17 Feb 2022, Accepted 18 Jun 2022, Published online: 29 Jun 2022

References

  • Berger W, Kloeckener-Gruissem B, Neidhardt J. Neidhardt the molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29(5):335–75. doi:10.1016/j.preteyeres.2010.03.004.
  • Jacobson SG, Buraczynska M, Milam AH, Chen C, Järvaläinen M, Fujita R, Wu W, Huang Y, Cideciyan AV, Swaroop A. Disease expression in X-linked retinitis pigmentosa caused by a putative null mutation in the RPGR gene. Invest Ophthalmol Vis Sci. 1997;38(10):1983–97.
  • Salmaninejad A, Motaee J, Farjami M, Alimardani M, Esmaeilie A, Pasdar A. Next-Generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genet. 2019;40(5):393–402. doi:10.1080/13816810.2019.1675178.
  • Konstantinou EK, Shaikh N, Ramsey DJ. Birt-Hogg-Dubé syndrome associated with chorioretinopathy and nyctalopia: a case report and review of the literature. Ophthalmic Genet. 2021 :1–7. Epub ahead of print. doi:10.1080/13816810.2021.1961281
  • Miyata M, Oishi A, Hasegawa T, Oishi M, Numa S, Otsuka Y, Uji A, Kadomoto S, Hata M, Ikeda HO, et al. Concentric choriocapillaris flow deficits in retinitis pigmentosa detected using wide-angle swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60(4):1044–49.doi:10.1167/iovs.18-26176.
  • Hagag AM, Mitsios A, Gill JS, Do Rio JM N, Theofylaktopoulos V, Houston S, Webster AR, Dubis AM, Moosahee M. Characterisation of microvascular abnormalities using OCT angiography in patients with biallelic variants in USH2A and MYO7A. Br J Ophthalmol. 2020;104(4):480–86. doi:10.1136/bjophthalmol-2019-314243.
  • Stevanovic M, Kapetanovic JC, Jolly JK, MacLaren RE. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmol. 2020;98(3):e322–e327. doi:10.1111/aos.14281.
  • Bietti G. Su alcune forme atipiche o rare di degenerazione retinica (degenerazione tappeto-retiniche e quadri morbosi similari). Boll Ocul. 1937;16:1159–244.
  • Moore AT, Fitzke FW, Kemp CM, Arden GB, Keen TJ, Inglehearn CF, Bhattacharya SS, Bird AC. Abnormal dark adaptation kinetics in autosomal dominant sector retinitis pigmentosa due to rod opsin mutation. Br J Ophthalmol. 1992;76(8):465–69. doi:10.1136/bjo.76.8.465.
  • Van Woerkom C, Ferrucci S. Sector retinitis pigmentosa. Optometry. 2005;76(5):309–17. doi:10.1016/s1529-1839(05)70314-6.
  • Ballios BG, Place EM, Martinez-Velazquez L, Pierce EA, Comander JI, Huckfeldt RM. Beyond sector retinitis pigmentosa: expanding the phenotype and natural history of the rhodopsin gene codon 106 mutation (Gly-to-Arg) in autosomal dominant retinitis pigmentosa. Genes (Basel). 2021;12(12):1853. doi:10.3390/genes12121853.
  • Georgiou M, Grewal PS, Narayan A, Alser M, Ali N, Fujinami K, Webster AR, Michaelides M. Sector retinitis pigmentosa: extending the molecular genetics basis and elucidating the natural history. Am J Ophthalmol. 2021;221:299–310.doi:10.1016/j.ajo.2020.08.004.
  • Nguyen XT, Talib M, van Cauwenbergh C, van Schooneveld MJ, Fiocco M, Wijnholds J, Ten Brink JB, Florijm RJ, Schalij-Delfos NE, Dagnelie G, et al. Clinical characteristics and natural history of Rho-associated retinitis pigmentosa: a long-term follow-up study. Retina. 2021;41(1):213–23.doi:10.1097/IAE.0000000000002808.
  • Jackson GR, Scott IU, Kim IK, Quillen DA, Iannaccone A, Edwards JG. Diagnostic sensitivity and specificity of dark adaptometry for detection of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(3):1427–31. doi:10.1167/iovs.13-13745.
  • Elnahry AG, Ramsey DJ. Optical coherence tomography angiography imaging of the retinal microvasculature is unimpeded by macular xanthophyll pigment. Clin Exp Ophthalmol. 2020;48(7):1012–14. doi:10.1111/ceo.13824.
  • Maguire AM, Bennett J, Aleman EM, Leroy BP, Aleman TS. Clinical perspective: treating RPE65-associated retinal dystrophy. Mol Ther. 2021;29(2):442–63. doi:10.1016/j.ymthe.2020.11.029.
  • Branson SV, McClintic JI, Stamper TH, Haldeman-Englert CR, John VJ. Sector retinitis pigmentosa associated with novel compound heterozygous mutations of CDH23. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):183–86. doi:10.3928/23258160-20160126-14.
  • DeLuca AP, Whitmore SS, Barnes J, Sharma TP, Westfall TA, Scott CA, Weed MC, Wiley JS, Wiley LA, Johnston RM, et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum Mol Genet. 2016;25(1):44–56.doi:10.1093/hmg/ddv446.
  • Daiger SP. RetNet™: retinal information network. Houston (TX): University of Texas Health Science Center; 1996-2022 [accessed 2022 Feb 4].
  • Shah SP, Wong F, Sharp DM, Vincent AL. A novel rhodopsin point mutation, proline-170-histidine, associated with sectoral retinitis pigmentosa. Ophthalmic Genet. 2014;35(4):241–47. doi:10.3109/13816810.2014.924014.
  • Napier ML, Durga D, Wolsley CJ, Chamney S, Alexander S, Brennan R, Simpson DA, Silvestri G, Willoughby CE. Mutational analysis of the rhodopsin gene in sector retinitis pigmentosa. Ophthalmic Genet. 2015;36(3):239–43. doi:10.3109/13816810.2014.958862.
  • Coussa RG, Basali D, Maeda A, DeBenedictis M, Traboulsi EI. Sector retinitis pigmentosa: report of ten cases and a review of the literature. Mol Vis. 2019;25:869–89.
  • Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–66. doi:10.1038/343364a0.
  • Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Müller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci U S a. 2002;99(23):14946–51. doi:10.1073/pnas.232579599.
  • Sorusch N, Wunderlich K, Bauss K, Nagel-Wolfrum K, Wolfrum U. Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies. Adv Exp Med Biol. 2014;801:527–33. 10.1007/978-1-4614-3209-8_67.
  • Garcia-Delgado AB, Valdes-Sanchez L, Morillo-Sanchez MJ, Ponte-Zuñiga B, Diaz-Corrales FJ, de la Cerda B. Dissecting the role of EYS in retinal degeneration: clinical and molecular aspects and its implications for future therapy. Orphanet J Rare Dis. 2021;16(1):222. doi:10.1186/s13023-021-01843-z.
  • Marques JP, Porto FBO, Carvalho AL, Neves E, Chen R, Sampaio SAM, Murta J, Saraiva J, Silva R. EYS-Associated sector retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2021. Epub ahead of print. doi:10.1007/s00417-021-05411-w.
  • Cundy O, Broadgate S, Halford S, MacLaren RE, Shanks ME, Clouston P, Gilhooley MJ, Downes SM. Genetic and clinical findings in an ethnically diverse retinitis pigmentosa cohort associated with pathogenic variants in EYS. Eye (Lond). 2021;35(5):1440–49. doi:10.1038/s41433-020-1105-8.
  • Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millan JM, Garcia-Carcia G. Usher syndrome: genetics of a human ciliopathy. Int J Mol Sci. 2021;22(13):6723. doi:10.3390/ijms22136723.
  • Kim HJ, Sohn KM, Shy ME, Ktajewski KM, Hwang M, Park JH, Jang SY, Won HH, Choi BO, Hong SH, et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5). Am J Hum Genet. 2007;81(3):552–58.doi:10.1086/519529.
  • Pei W, Xu L, Varshney GK, Carrington B, Bishop K, Jones M, Huang SC, Idol J, Pretorius PR, Beirl A, et al. Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases. Sci Rep. 2016;6(1):29946.doi:10.1038/srep29946.
  • Bonilha VL, Rayborn ME, Bell BA, Marino MJ, Beight CD, Pauer GJ, Traboulsi EI, Hollyfield JG, Hagstrom SA. Retinal histopathology in eyes from patients with autosomal dominant retinitis pigmentosa caused by rhodopsin mutations. Graefes Arch Clin Exp Ophthalmol. 2015;253(12):2161–69. doi:10.1007/s00417-015-3099-7.
  • Huckfeldt RM, Grigorian F, Place E, Comander JI, Vavvas D, Young LH, Yang P, Shurygina M, Pierce EA, Pennesi ME. Biallelic RP1-associated retinal dystrophies: expanding the mutational and clinical spectrum. Mol Vis. 2020;26:423–33.
  • Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, Baldi A, Hiriyanna S, MacDonald CB, Baldi F, et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet. 2003;40(11):e118. doi:10.1136/jmg.40.11.e118.
  • Xiao T, Xu K, Zhang X, Xie Y, Li Y. Sector retinitis pigmentosa caused by mutations of the RHO gene. Eye (Lond). 2019;33(4):592–99. doi:10.1038/s41433-018-0264-3.
  • Verdina T, Greenstein VC, Tsang SH, Murro V, Mucciolo DP, Passerini I, Mastropasqua R, Cavallini GM, Virgili G, Giansanti F, et al. Clinical and genetic findings in Italian patients with sector retinitis pigmentosa. Mol Vis. 2021;27:78–94.
  • Gandra M, Anandula V, Authiappan V, Sundaramurthy S, Raman R, Bhattacharya S, Govindasamy K. Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India. Mol Vis. 2008;14:1105–13.
  • Kobal N, Krašovec T, Šuštar M, Volk M, Peterlin B, Hawlina M, Fakin A. Stationary and progressive phenotypes caused by the p.G90d mutation in rhodopsin gene. Int J Mol Sci. 2021;22(4):2133. doi:10.3390/ijms22042133.
  • Katagiri S, Hayashi T, Akahori M, Itabashi T, Nishino J, Yoshitake K, Furuno M, Ikeo K, Okada T, Tsuneoka H, et al. RHO mutations (p.W126l and p.A346p) in two Japanese families with autosomal dominant retinitis pigmentosa. J Ophthalmol. 2014;2014:210947.
  • Rivera-De la Parra D, Cabral-Macias J, Matias-Florentino M, Rodriguez-Ruiz G, Robredo V, Zenteno JC. Rhodopsin p.N78i dominant mutation causing sectorial retinitis pigmentosa in a pedigree with intrafamilial clinical heterogeneity. Gene. 2013;519(1):173–76. doi:10.1016/j.gene.2013.01.048.
  • Fahim AT, Daiger SP, and Weleber RG. Nonsyndromic retinitis pigmentosa overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A, editor. GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 2000 Aug 4 [updated 2017 Jan 19]; p. 1–26. 19932022 [19932022 [accessed 2022 Feb 15]. gov/books/NBK1417/
  • Ramsey DJ, Sunness JS, Malviya P, Applegate C, Hager GD, Handa JT. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration. Retina. 2014;34(7):1296–307. doi:10.1097/IAE.0000000000000069.
  • Nguyen XTA, Talib M, van Schooneveld MJ, Brinks J, Brink JT, Florijn RJ, Wijnholds J, Verdijk RM, Bergen AA, Boon CJ. RPGR-Associated dystrophies: clinical, genetic, and histopathological features. Int J Mol Sci. 2020;21(3):835. doi:10.3390/ijms21030835.
  • Heijl A, Bengtsson B. Diagnosis of early glaucoma with flicker comparisons of serial disc photographs. Invest Ophthalmol Vis Sci. 1989 ;30(11):2376–84.
  • You QS, Xu L, Jonas JB, Wang S, Yang H. Change in choroidal nevi during a 5-year follow-up study: the Beijing Eye Study. Br J Ophthalmol. 2010 ;94(5):575–78. doi:10.1136/bjo.2009.165720.
  • Saihan Z, Stabej PLQ, Robson AG, Tangesh N, Holder GE, Moore AT, Steel KP, Luxon LM, Bitner-Glindzicz M, Webster AR. Mutations in the USH1C gene associated with sector retinitis pigmentosa and hearing loss. Retina. 2011;31(8):1708–16. doi:10.1097/IAE.0b013e31820d3fd1.
  • Plana-Bonamaisó A, López-Begines S, Fernández-Justel D, Junza A, Soler-Tapia A, Andilla J, Loza-Alvarez P, Rosa JL, Miralles E, Casals I, et al. Post-Translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. Elife. 2020;9:e56418.
  • Williams DS, Lopes VS. The many different cellular functions of MYO7A in the retina. Biochem Soc Trans. 2011;39(5):1207–10. doi:10.1042/BST0391207.
  • Elnahry AG, Ramsey DJ. Automated image alignment for comparing microvascular changes detected by fluorescein angiography and optical coherence tomography angiography in diabetic retinopathy. Semin Ophthalmol. 2021;36(8):757–64. doi:10.1080/08820538.2021.1901122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.