214
Views
0
CrossRef citations to date
0
Altmetric
Report

Fleck-like lesions in CEP290-associated leber congenital amaurosis: a case series

, , , , , , , , , ORCID Icon & show all
Pages 824-833 | Received 20 Jul 2022, Accepted 09 Nov 2022, Published online: 05 Dec 2022

References

  • Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101:1147–54. doi:10.1136/bjophthalmol-2016-309975.
  • Leber T. Uber retinitis pigmentosa and angeborne amaurose. Albrecht von Graefes Arch Klin Ophthalmol. 1869;15:1–25. doi:10.1007/BF02721213.
  • Aleman TS, Jacobson SG, Chico JD, Scott ML, Cheung AY, Windsor EAM, Furushima M, Redmond TM, Bennett J, Palczewski K, et al. Impairment of the transient pupillary light reflex in Rpe65(−/−) mice and humans with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2004;45:1259–71.
  • Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, Windsor EAM, Traboulsi EI, Heon E, Pittler SJ, Milam AH, et al. Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. Proc Natl Acad Sci U S A. 2005;102:6177–82.
  • Jacobson SG, Aleman TS, Cideciyan AV, Roman AJ, Sumaroka A, Windsor EAM, Schwartz SB, Heon E, Stone EM. Defining the residual vision in leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci. 2009;50:2368–75. doi:10.1167/iovs.08-2696.
  • Aleman TS, Uyhazi KE, Serrano LW, Vasireddy V, Bowman SJ, Ammar MJ, Pearson DJ, Maguire AM, Bennett J. RDH12 mutations cause a severe retinal degeneration with relatively spared rod function. Invest Ophthalmol Vis Sci. 2018;59:5225–36. doi:10.1167/iovs.18-24708.
  • Uyhazi KE, Aravand P, Bell BA, Wei Z, Leo L, Serrano LW, Pearson DJ, Shpylchak I, Pham J, Vasireddy V, et al. Treatment potential for LCA5-associated leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2020;61:30.
  • O’Connor K, O’Neil EC, Aleman TS. Relative preservation of the extramacular retina in LCA5-LCA. Am J Ophthalmol Case Rep. 2022;25:101260. doi:10.1016/j.ajoc.2022.101260.
  • Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Roman AJ, Swider M, Schwartz SB, Banin E, Stone EM. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining. Invest Opthalmol Visual Sci. 2011;52:70. doi:10.1167/iovs.10-6127.
  • Milam AH, Barakat MR, Gupta N, Rose L, Aleman TS, Pianta MJ, Cideciyan AV, Sheffield VC, Stone EM, Jacobson SG. Clinicopathologic effects of mutant GUCY2D in leber congenital amaurosis. Ophthalmology. 2003;110:549–58. doi:10.1016/S0161-6420(02)01757-8.
  • Jacobson SG, Cideciyan AV, Peshenko IV, Sumaroka A, Olshevskaya EV, Cao L, Schwartz SB, Roman AJ, Olivares MB, Sadigh S, et al. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum Mol Genet. 2013;22:168–83.
  • Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, Choudhury S, Schwartz SB, Heon E, Fishman GA, et al. Defining outcomes for clinical trials of leber congenital amaurosis caused by GUCY2D mutations. Am J Ophthalmol. 2017;177:44–57.
  • Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Wu V, Swider M, Sheplock R, Krishnan AK, Garafalo AV. Leber congenital amaurosis due to GUCY2D mutations: longitudinal analysis of retinal structure and visual function. Int J Mol Sci. 2021;22:2031. doi:10.3390/ijms22042031.
  • Bedoukian EC, Zhu X, Serrano LW, Scoles D, Aleman TS. NMNAT1-associated cone-rod dystrophy: evidence for a spectrum of foveal maldevelopment. Retin Cases Brief Rep. 2020. doi:10.1097/ICB.0000000000000992.
  • Valente E, Silhavy J, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38:623–25.
  • Tsang WY, Bossard C, Khanna H, Peränen J, Swaroop A, Malhotra V, Dynlacht BD. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell. 2008;15:187–97. doi:10.1016/j.devcel.2008.07.004.
  • Kim J, Krishnaswami SR, Gleeson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17:3796–805. doi:10.1093/hmg/ddn277.
  • Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Sem Cell Dev Biol. 2021;110:70–88. doi:10.1016/j.semcdb.2020.07.013.
  • Prosser SL, Tkach J, Gheiratmand L, Kim J, Raught B, Morrison CG, Pelletier L. Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nat Cell Biol. 2022;24:483–96. doi:10.1038/s41556-022-00869-0.
  • Sayer J, Otto E, O’Toole J, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38:674–81.
  • Tauqeer Z, O’Neil EC, Brucker AJ, Aleman TS. NPHP1 full deletion causes nephronophthisis and a cone-rod dystrophy. Retin Cases Brief Rep. 2022;Publish Ahead of Print. doi:10.1097/ICB.0000000000001208.
  • Valkenburg D, van Cauwenbergh C, Lorenz B, van Genderen MM, Bertelsen M, Pott JWR, Coppieters F, de Zaeytijd J, Thiadens AAHJ, Klaver CCW, et al. Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655a>g mutation in CEP290. Invest Ophthalmol Vis Sci. 2018;59:4384–91.
  • Cideciyan AV, Aleman TS, Jacobson SG, Khanna H, Sumaroka A, Aguirre GK, Schwartz SB, Windsor EAM, He S, Chang B, et al. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of leber congenital amaurosis. Hum Mutat. 2007;28:1074–83.
  • Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB, Sumaroka A, Roman AJ, Stone EM, Jacobson SG, Swaroop A. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone NPHP6 hypomorph mouse that mimics the human retinal ciliopathy. Hum Mol Genet. 2011;20:1411–23. doi:10.1093/hmg/ddr022.
  • Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, Choi W, Sheplock R, Swider M, Kosyk MS, et al. Outcome measures for clinical trials of leber congenital amaurosis caused by the intronic mutation in the CEP290 gene. Invest Opthalmol Visual Sci. 2017;58:2609.
  • Boye SE, Huang WC, Roman AJ, Sumaroka A, Boye SL, Ryals RC, Olivares MB, Ruan Q, Tucker BA, Stone EM, et al. Natural history of cone disease in the murine model of leber congenital amaurosis due to CEP290 mutation: determining the timing and expectation of therapy. PLoS One. 2014;9:e92928.
  • Sheck L, Davies WIL, Moradi P, Robson AG, Kumaran N, Liasis AC, Webster AR, Moore AT, Michaelides M. Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology. 2018. doi:10.1016/j.ophtha.2017.12.013.
  • Russell SR, Drack AV, Cideciyan AV, Jacobson SG, Leroy BP, Van Cauwenbergh C, Ho AC, Dumitrescu AV, Han IC, Martin M, et al. Intravitreal antisense oligonucleotide sepofarsen in leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28:1014–21.
  • den Hollander AI, Koenekoop RK, Yzer S, den Hollander AI, Lopez I, Arends ML, Voesenek KEJ, Zonneveld MN, Strom TM, Meitinger T, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of leber congenital amaurosis. Am J Hum Genet. 2006;79:556–61.
  • Perrault I, Delphin N, Hanein S, Gerber S, Dufier J-L, Roche O, Defoort-Dhellemmes S, Dollfus H, Fazzi E, Munnich A, et al. Spectrum of NPHP6/CEP290 mutations in leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat. 2007;28:416.
  • Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matulevičienė A, Nunes L, Meersschaut V, et al. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat. 2010;31:E1709–1766.
  • Littink KW, Pott JW, Collin RW, Kroes HY, Verheij JBGM, Blokland EAW, de Castro Miró M, Hoyng CB, Klaver CCW, Koenekoop RK, et al. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype. Invest Ophthalmol Vis Sci. 2010;51:3646–52.
  • Yzer S, Hollander AI, Lopez I, Pott JWR, de Faber JTHN, Cremers FPM, Koenekoop RK, van den Born LI. Ocular and extra-ocular features of patients with leber congenital amaurosis and mutations in CEP290. Mol Vis. 2012;18:412–25.
  • Leroy BP, Birch DG, Duncan JL, Lam BL, Koenekoop RK, Porto FBO, Russell SR, Girach A. Leber congenital amaurosis due to CEP290 mutations—severe vision impairment with a high unmet medical need. Retina. 2021;41:898–907. doi:10.1097/IAE.0000000000003133.
  • Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, Jacobson SG. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998;39:2405–16.
  • Klein M, Birch DG. Psychophysical assessment of low visual function in patients with retinal degenerative diseases (RDDs) with the diagnosys full-field stimulus threshold (D-FST). Doc Ophthalmol. 2009;119:217–24. doi:10.1007/s10633-009-9204-7.
  • Roman AJ, Cideciyan AV, Wu V, Garafalo AV, Jacobson SG. Full-field stimulus testing: role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog Retin Eye Res. 2021;87:101000. doi:10.1016/j.preteyeres.2021.101000.
  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292:497–523. doi:10.1002/cne.902920402.
  • Papon JF, Perrault I, Coste A, Louis B, Gerard X, Hanein S, Fares-Taie L, Gerber S, Defoort-Dhellemmes S, Vojtek AM, et al. Abnormal respiratory cilia in non-syndromic leber congenital amaurosis with CEP290 mutations. J Med Genet. 2010;47:829–34.
  • Rachel RA, May-Simera HL, Veleri S, Gotoh N, Choi BY, Murga-Zamalloa C, McIntyre JC, Marek J, Lopez I, Hackett AN, et al. Combining CEP290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J Clin Invest. 2012;122:1233–45.
  • Anand M, Khanna H. Ciliary transition zone (TZ) proteins RPGR and CEP290: role in photoreceptor cilia and degenerative diseases. Expert Opin Ther Targets. 2012;16:541–51. doi:10.1517/14728222.2012.680956.
  • Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, Michaelides M, Tufail A, Moore AT. Differentiating drusen: drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016;53:70–106. doi:10.1016/j.preteyeres.2016.04.008.
  • Aleman TS, Garrity ST, Brucker AJ. Retinal structure in vitamin a deficiency as explored with multimodal imaging. Doc Ophthalmol. 2013;127:239–43. doi:10.1007/s10633-013-9403-0.
  • Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD, Brucker AJ, Maguire AM, Bennett J, Stone EM, Jacobson SG. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13:525–34. doi:10.1093/hmg/ddh048.
  • Aleman TS, Cideciyan AV, Windsor EA, Schwartz SB, Swider M, Chico JD, Sumaroka A, Pantelyat AY, Duncan KG, Gardner LM, et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Invest Ophthalmol Vis Sci. 2007;48:1319–29.
  • Solberg Y, Dysli C, Escher P, Berger L, Wolf S, Zinkernagel MS. Retinal flecks in stargardt disease reveal characteristic fluorescence lifetime transition over time. Retina. 2019;39:879–88. doi:10.1097/IAE.0000000000002519.
  • Sauer L, Vitale AS, Modersitzki NK, Bernstein PS. Fluorescence lifetime imaging ophthalmoscopy: autofluorescence imaging and beyond. Eye. 2021;35:93–109. doi:10.1038/s41433-020-01287-y.
  • Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res. 2016;55:52–81. doi:10.1016/j.preteyeres.2016.05.003.
  • May-Simera HL, Wan Q, Jha BS, Hartford J, Khristov V, Dejene R, Chang J, Patnaik S, Lu Q, Banerjee P, et al. Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep. 2018;22:189–205.
  • Saltykova IV, Elahi A, Pitale PM, Gorbatyuk OS, Athar M, Gorbatyuk MS. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis. 2021;12. doi:10.1038/s41419-021-03944-w.
  • Mustafi D, Kevany BM, Genoud C, Okano K, Cideciyan AV, Sumaroka A, Roman AJ, Jacobson SG, Engel A, Adams MD, et al. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. FASEB J. 2011;25:3157–76.
  • Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN, Pohida K, Munasinghe J, Gotoh N, Wickstead B, et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet. 2015;24:3775–91.
  • Datta P, Hendrickson B, Brendalen S, Ruffcorn A, Seo S. The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors. J Biol Chem. 2019;294:19119–36. doi:10.1074/jbc.RA119.009712.
  • Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, Roman AJ, Windsor EAM, Steinberg JD, Branham K, Othman M, Swaroop A, et al. Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci. 2007;48:4759–65.
  • Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res. 2016;150:149–65. doi:10.1016/j.exer.2016.03.018.
  • Kovach JL, Isildak H, Sarraf D. Crystalline retinopathy: unifying pathogenic pathways of disease. Surv Ophthalmol. 2019;64:1–29. doi:10.1016/j.survophthal.2018.08.001.
  • Fuerst NM, Serrano L, Han G, Morgan JIW, Maguire AM, Leroy BP, Kim BJ, Aleman TS. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization. Ophthalmic Genet. 2016;37:445–52. doi:10.3109/13816810.2015.1126616.
  • Sharma R, Williams DR, Palczewska G, Palczewski K, Hunter JJ. Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye. Invest Opthalmol Visual Sci. 2016;57:632. doi:10.1167/iovs.15-17961.
  • Collin RW, den Hollander AI, van der Velde-Visser SD, Bennicelli J, Bennett J, Cremers FP, den Hollander AI, van der Velde-Visser SD. Antisense oligonucleotide (AON)-based therapy for leber congenital amaurosis caused by a frequent mutation in CEP290. Mol Ther Nucleic Acids. 2012;1:e14. doi:10.1038/mtna.2012.3.
  • Garanto A, Chung DC, Duijkers L, Corral-Serrano JC, Messchaert M, Xiao R, Bennett J, Vandenberghe LH, Collin RWJ. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet. 2016;25:2552–63. doi:10.1093/hmg/ddw118.
  • Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, Roman AJ, Sumaroka A, Han IC, Hochstedler MD, et al. Effect of an intravitreal antisense oligonucleotide on vision in leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25:225–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.