292
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia

ORCID Icon, , , , ORCID Icon &
Pages 1-15 | Received 07 Jun 2023, Accepted 26 Aug 2023, Published online: 09 Oct 2023

References

  • Garcia-Filion P, Borchert M. Optic nerve hypoplasia syndrome: a review of the epidemiology and clinical associations. Curr Treat Options Neurol. 2013;15(1):78–89. doi:10.1007/s11940-012-0209-2.
  • Kong L, Fry M, Al-Samarraie M, Gilbert C, Steinkuller PG. An update on progress and the changing epidemiology of causes of childhood blindness worldwide. J Am Assoc Pediatric Ophthalmol Strabismus. 2012;16(6):501–7. doi:10.1016/j.jaapos.2012.09.004.
  • Fahnehjelm KT, Dahl S, Martin L, Ek U. Optic nerve hypoplasia in children and adolescents; prevalence, ocular characteristics and behavioural problems. Acta Ophthalmol. 2014;92(6):563–70. doi:10.1111/aos.12270.
  • Blohmé J, Bengtsson‐Stigmar E, Tornqvist K. Visually impaired Swedish children. Longitudinal comparisons 1980–1999. Acta Ophthalmol Scan. 2000;78(4):416–20. doi:10.1034/j.1600-0420.2000.078004416.x.
  • Goggin M, O’Keefe M. Childhood blindness in the republic-of-Ireland - a national survey. Br J Ophthalmol. 1991;75(7):425–9. doi:10.1136/bjo.75.7.425.
  • Rahi JS, Cable N, BCVISG. Severe visual impairment and blindness in children in the UK. Lancet. 2003;362(9393):1359–65. doi:10.1016/s0140-6736(03)14631-4.
  • Hatton DD, Schwietz E, Boyer B, Rychwalski P. Babies count: the national registry for children with visual impairments, birth to 3 years. J AAPOS. 2007;11(4):351–5. doi:10.1016/j.jaapos.2007.01.107.
  • Ryabets-Lienhard A, Stewart C, Borchert M, Geffner ME. The optic nerve hypoplasia spectrum: review of the literature and clinical guidelines. Adv Pediatr. 2016;63(1):127–46. doi:10.1016/j.yapd.2016.04.009.
  • Dahl S, Wiberg MK, Fahnehjelm KT, Sävendahl L, Wickström R. High prevalence of pituitary hormone deficiency in both unilateral and bilateral optic nerve hypoplasia. Acta Paediatr. 2019;108(9):1677–85. doi:10.1111/apa.14751.
  • Brodsky MC. Optic nerve hypoplasia: “neural guidance” and the role of mentorship. J Neuroophthalmol. 2020;40(Suppl 1):S21–8. doi:10.1097/wno.0000000000001003.
  • Margalith D, Jan JE, McCormick AQ, Tze WJ, Lapointe J. Clinical spectrum of congenital optic nerve hypoplasia: review of 51 patients. Dev Med Child Neurol. 1984;26(3):311–22. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=6734946&retmode=ref&cmd=prlinks.
  • McCulloch DL, Garcia-Filion P, Garcia-Fillion P, van BG, Borchert MS. Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye (Lond). 2007;21(6):712–20. doi:10.1038/sj.eye.6702309.
  • Dahl S, Wickström R, Ek U, Fahnehjelm KT. Children with optic nerve hypoplasia face a high risk of neurodevelopmental disorders. Acta Paediatr. 2018;107(3):484–9. doi:10.1111/apa.14163.
  • Tornqvist K, Ericsson A, Källén B. Optic nerve hypoplasia: risk factors and epidemiology. Acta Ophthalmol Scan. 2002;80(3):300–4. doi:10.1034/j.1600-0420.2002.800313.x.
  • Murray PG, Paterson WF, Donaldson MDC. Maternal age in patients with septo-optic dysplasia. J Pediatric Endocrinol Metab. 2005;18(5):471–6. doi:10.1515/jpem.2005.18.5.471.
  • Garcia-Filion P, Fink C, Geffner ME, Borchert M. Optic nerve hypoplasia in North America: a re-appraisal of perinatal risk factors. Acta Ophthalmol. 2010;88(5):527–34. doi:10.1111/j.1755-3768.2008.01450.x.
  • Situ BA, Borchert MS, Brown B, Garcia‐Filion P. 2023. Association of prepregnancy body mass index and gestational weight gain on severity of optic nerve hypoplasia. Birth Defects Res. Published online 2023. doi:10.1002/bdr2.2165.
  • Garcia-Filion P, Borchert M. Prenatal determinants of optic nerve hypoplasia: review of suggested correlates and future focus. Surv Ophthalmol. 2013;58(6):610–9. doi:10.1016/j.survophthal.2013.02.004.
  • Chen C-A, Yin J, Lewis RA, Schaaf CP. Genetic causes of optic nerve hypoplasia. J Med Genet. 2017;54(7):441. doi:10.1136/jmedgenet-2017-104626.
  • Nabi NU, Mezer E, Blaser SI, Levin AA, Buncic JR. Ocular findings in lissencephaly. J Am Assoc Pediatric Ophthalmol Strabismus. 2003;7(3):178–84. doi:10.1016/s1091-8531(02)42005-8.
  • Armour CM, Allanson JE. Further delineation of cardio-facio-cutaneous syndrome: clinical features of 38 individuals with proven mutations. J Med Genet. 2008;45(4):249. doi:10.1136/jmg.2007.054460.
  • Trier van DC, Burgt van der I, Draaijer RW, Cruysberg JRM, Noordam C, Draaisma JM. Ocular findings in noonan syndrome: a retrospective cohort study of 105 patients. Eur J Pediatr. 2018;177(8):1293–8. doi:10.1007/s00431-018-3183-1.
  • Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DBV, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet. 2012;44(5):575–80. doi:10.1038/ng.2252.
  • Koolen DA, Pfundt R, Linda K, Beunders G, Veenstra-Knol HE, Conta JH, Fortuna AM, Gillessen-Kaesbach G, Dugan S, Halbach S, et al. The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur J Hum Genet. 2016;24(5):652–9. doi:10.1038/ejhg.2015.178.
  • McCulley TJ, Mayer K, Dahr SS, Simpson J, Holland EJ. Aniridia and optic nerve hypoplasia. Eye (Lond). 2005;19(7):762–4. doi:10.1038/sj.eye.6701642.
  • Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang S-C, Gamm DM. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci. 2009;106(39):16698–703. doi:10.1073/pnas.0905245106.
  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85. doi:10.1016/j.stem.2012.05.009.
  • Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao L-H, Peters A, Park TS, Zambidis ET, Meyer JS, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5(1):4047. doi:10.1038/ncomms5047.
  • Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6(1):6286. doi:10.1038/ncomms7286.
  • Skarf B, Hoyt CS. Optic-nerve hypoplasia in Children - association with anomalies of the endocrine and Cns. Arch Ophthalmol. 1984;102(1):62–7. doi:10.1001/archopht.1984.01040030046032.
  • Mosier MA, Lieberman MF, Green WR, Knox DL. Hypoplasia of the optic nerve. Arch Ophthalmol. 1978;96(8):1437–42. doi:10.1001/archopht.1978.03910060185017.
  • Hoyt CS, Good WV. Do we really understand the difference between optic nerve hypoplasia and atrophy? Eye (Lond). 1992;6(Pt 2):201–4. doi:10.1038/eye.1992.39.
  • Garcia-Filion P, Epport K, Nelson M, Azen C, Geffner ME, Fink C, Borchert M. Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics. 2008;121(3):e653–9. doi:10.1542/peds.2007-1825.
  • Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y, Pera M. Efficient feeder-free episomal reprogramming with small molecules. PLoS One. 2011;6(3):e17557. doi:10.1371/journal.pone.0017557.
  • Aparicio JG, Hopp H, Choi A, Comar JM, Liao VC, Harutyunyan N, Lee TC. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina. Exp Eye Res. 2017;154:177–89. doi:10.1016/j.exer.2016.11.013.
  • Guez-Barber D, Fanous S, Harvey BK, Zhang Y, Lehrmann E, Becker KG, Picciotto MR, Hope BT. FACS purification of immunolabeled cell types from adult rat brain. J Neurosci Methods. 2012;203(1):10–18. doi:10.1016/j.jneumeth.2011.08.045.
  • Durinck S, Moreau Y, Kasprzyk A, Davis S, Moor BD, Brazma A, Huber W. BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439–40. doi:10.1093/bioinformatics/bti525.
  • Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91. doi:10.1038/nprot.2009.97.
  • Chambers SM, Qi Y, Mica Y, Lee G, Zhang X-J, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30(7):715–20. doi:10.1038/nbt.2249.
  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80. doi:10.1038/nbt.1529.
  • Chambers SM, Mica Y, Studer L, Tomishima MJ. Converting human pluripotent stem cells to neural tissue and neurons to model neurodegeneration. Methods Mol Biol. 2011;793:87–97. doi:10.1007/978-1-61779-328-8_6.
  • Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001;128(13):2497–508. http://dev.biologists.org/content/128/13/2497.short.
  • Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol. 2005;280(2):467–81. doi:10.1016/j.ydbio.2005.01.028.
  • Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001;15(1):24–9. doi:10.1101/gad.855301.
  • Xiang M, Qiu F, Jiang H, Jin K. Molecular control of retinal ganglion cell specification and differentiation. INTECH Open Access Publisher. Published online 2011. http://www.researchgate.net/profile/Kangxin_Jin/publication/221919582_Molecular_Control_of_Retinal_Ganglion_Cell_Specification_and_Differentiation/links/0c96051fa6291cae60000000.pdf.
  • Yang Z, Ding K, Pan L, Deng M, Gan L. Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol. 2003;264(1):240–54. doi:10.1016/j.ydbio.2003.08.005.
  • Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci. 2021;78(9):4417–33. doi:10.1007/s00018-021-03814-w.
  • Lu Y, Shiau F, Yi W, Lu S, Wu Q, Pearson JD, Kallman A, Zhong S, Hoang T, Zuo Z, et al. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev Cell. 2020;53(4):473–91.e9. doi:10.1016/j.devcel.2020.04.009.
  • Sridhar A, Hoshino A, Finkbeiner CR, Chitsazan A, Dai L, Haugan AK, Eschenbacher KM, Jackson DL, Trapnell C, Bermingham-McDonogh O, et al. Single-cell transcriptomic comparison of human fetal retina, hPSC-Derived retinal organoids, and Long-term retinal cultures. Cell reports. 2020;30(5):1644–59.e4. doi:10.1016/j.celrep.2020.01.007.
  • Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS. retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Rep. 2018;10(4):1282–93. doi:10.1016/j.stemcr.2018.02.010.
  • Provis JM, Penfold PL. Cell death and the elimination of retinal axons during development. Prog Neurobiol. 1988;31(4):331–47. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=3045885&retmode=ref&cmd=prlinks.
  • Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res. 2003;22(4):483–543. doi:10.1016/s1350-9462(03)00027-2.
  • Bähr M. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 2000;23(10):483–90. doi:10.1016/s0166-2236(00)01637-4.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550–21. doi:10.1186/s13059-014-0550-8.
  • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–97. doi:10.1093/nar/gks042.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi:10.1093/bioinformatics/btp616.
  • Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using rsubread and the edgeR quasi-likelihood pipeline. F1000research. 2016;5:1438. doi:10.12688/f1000research.8987.2.
  • Love MI, Soneson C, Patro R. Swimming downstream: statistical analysis of differential transcript usage following salmon quantification. F1000research. 2018;7:952. doi:10.12688/f1000research.15398.1.
  • Yagi T. Genetic basis of neuronal individuality in the mammalian brain. J Neurogenet. 2013;27(3):97–105. doi:10.3109/01677063.2013.801969.
  • Yokota S, Hirayama T, Hirano K, Kaneko R, Toyoda S, Kawamura Y, Hirabayashi M, Hirabayashi T, Yagi T. Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster. J Biol Chem. 2011;286(36):31885–95. doi:10.1074/jbc.m111.245605.
  • Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol. 2017;69:111–21. doi:10.1016/j.semcdb.2017.07.040.
  • Muk T, Stensballe A, Dmytriyeva O, Brunse A, Jiang P-P, Thymann T, Sangild PT, Pankratova S. Differential brain and cerebrospinal fluid proteomic responses to acute prenatal endotoxin exposure. Mol Neurobiol. 2022;59(4):2204–18. doi:10.1007/s12035-022-02753-2.
  • Grandér D, Johnsson P. Pseudogene-expressed RNAs: emerging roles in gene regulation and disease. Long Non-Coding RNAs In Human Disease. 2015;111–26. 10.1007/82_2015_442.
  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. doi:10.1038/nature19057.
  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43. doi:10.1038/s41586-020-2308-7.
  • Frisen L, Holmegaard L. Spectrum of optic nerve hypoplasia. Br J Ophthalmol. 1978;62(1):7–15. doi:10.1136/bjo.62.1.7.
  • Saadati HG, Hsu HY, Heller KB, Sadun AA. A histopathologic and morphometric differentiation of nerves in optic nerve hypoplasia and leber hereditary optic neuropathy. Arch Ophthalmol. 1998;116(7):911–6. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9682705&retmode=ref&cmd=prlinks.
  • McCarthy RC, Kosman DJ. Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72(4):709–27. doi:10.1007/s00018-014-1771-4.
  • Ji C, Kosman DJ. Molecular mechanisms of non‐transferrin‐bound and transferring‐bound iron uptake in primary hippocampal neurons. J Neurochem. 2015;133(5):668–83. doi:10.1111/jnc.13040.
  • Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M, Ehrenhofer‐Murray AE, Dittmar G, Gröne H, Lyko F. Queuosine‐modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37(18):e99777. doi:10.15252/embj.201899777.
  • Zallot R, Brochier-Armanet C, Gaston KW, Forouhar F, Limbach PA, Hunt JF, de C-LV. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family. ACS Chem Biol. 2014;9(8):1812–25. doi:10.1021/cb500278k.
  • MacPherson L, Ahmed S, Tamblyn L, Krutmann J, Förster I, Weighardt H, Matthews J. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int J Mol Sci. 2014;15(5):7939–57. doi:10.3390/ijms15057939.
  • Haarmann-Stemmann T, Abel J. The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function. Biol Chem. 2006;387(9):1195–9. doi:10.1515/bc.2006.147.
  • Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genetics. 2009;84(4):524–33. doi:10.1016/j.ajhg.2009.03.010.
  • Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017;46(Database issue):gkx1153–. doi:10.1093/nar/gkx1153.
  • Satterstrom FK, Kosmicki JA, Wang J, Breen MS, Rubeis SD, An J-Y, Peng M, Collins R, Grove J, Klei L, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–84.e23. doi:10.1016/j.cell.2019.12.036.
  • Liang C, Kerr A, Qiu Y, Cristofoli F, Esch HV, Fox MA, Mukherjee K. Optic nerve hypoplasia is a pervasive subcortical pathology of visual system in neonates. Invest Ophthalmol Visual Sci. 2017;58(12):5485–96. doi:10.1167/iovs.17-22399.
  • Singh RK, Nasonkin IO. Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness. Front Cell Neurosci. 2020;14:179. doi:10.3389/fncel.2020.00179.
  • Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA, Goldman D, Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci. 2011;14(5):578–86. doi:10.1038/nn.2798.
  • Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA. The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res. 2012;96(1):147–56. doi:10.1016/j.exer.2011.12.005.
  • Khan K, Logan CV, McKibbin M, Sheridan E, Elçioglu NH, Yenice O, Parry DA, Fernandez-Fuentes N, Abdelhamed ZIA, Al-Maskari A, et al. Next generation sequencing identifies mutations in atonal homolog 7 (ATOH7) in families with global eye developmental defects. Hum Mol Genet. 2012;21(4):776–83. doi:10.1093/hmg/ddr509.
  • Ribeiro DM, Rubinacci S, Ramisch A, Hofmeister RJ, Dermitzakis ET, Delaneau O. The molecular basis, genetic control and pleiotropic effects of local gene co-expression. Nat Commun. 2021;12(1):4842. doi:10.1038/s41467-021-25129-x.
  • Ribeiro DM, Ziyani C, Delaneau O. Shared regulation and functional relevance of local gene co-expression revealed by single cell analysis. Commun Biology. 2022;5(1):876. doi:10.1038/s42003-022-03831-w.
  • Lettre G. Rare and low-frequency variants in human common diseases and other complex traits. J Med Genet. 2014;51(11):705. doi:10.1136/jmedgenet-2014-102437.
  • Flynn E, Lappalainen T. Functional characterization of genetic variant effects on expression. Annu Rev Biomed Data Sci. 2022;5(1):119–39. doi:10.1146/annurev-biodatasci-122120-010010.
  • Chatterjee S, Ahituv N. Gene regulatory elements, major drivers of human disease. Annu Rev Genom Hum G. 2016;18(1):1–19. doi:10.1146/annurev-genom-091416-035537.
  • Bacchelli E, Blasi F, Biondolillo M, Lamb JA, Bonora E, Barnby G, Parr J, Beyer KS, Klauck SM, Poustka A, et al. Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Mol Psychiatr. 2003;8(11):916–24. doi:10.1038/sj.mp.4001340.
  • Ruzzo EK, Pérez-Cano L, Jung J-Y, Wang L, Kashef-Haghighi D, Hartl C, Singh C, Xu J, Hoekstra JN, Leventhal O, et al. Inherited and de novo genetic risk for autism impacts shared networks. Cell. 2019;178(4):850–66.e26. doi:10.1016/j.cell.2019.07.015.
  • Pannekoek W-J, Kooistra MRH, Zwartkruis FJT, Bos JL. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 2009;1788(4):790–6. doi:10.1016/j.bbamem.2008.12.010.
  • Murray AJ, Shewan DA. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci. 2008;38(4):578–88. doi:10.1016/j.mcn.2008.05.006.
  • Murray AJ, Tucker SJ, Shewan DA. cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J Neurosci. 2009;29(49):15434–44. doi:10.1523/jneurosci.3071-09.2009.
  • Guijarro-Belmar A, Viskontas M, Wei Y, Bo X, Shewan D, Huang W. Epac2 elevation reverses inhibition by chondroitin sulfate proteoglycans in vitro and transforms postlesion inhibitory environment to promote axonal outgrowth in an ex vivo model of spinal cord injury. J Neurosci. 2019;39(42):8330–46. doi:10.1523/jneurosci.0374-19.2019.
  • Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones KA, Quilliam LA, Prakriya M, et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat Neurosci. 2009;12(10):1275–84. doi:10.1038/nn.2386.
  • Fernandes HB, Riordan S, Nomura T, Remmers CL, Kraniotis S, Marshall JJ, Kukreja L, Vassar R, Contractor A. Epac2 mediates camp-dependent potentiation of neurotransmission in the hippocampus. J Neurosci. 2015;35(16):6544–53. doi:10.1523/jneurosci.0314-14.2015.
  • Catalani E, Bongiorni S, Taddei AR, Mezzetti M, Silvestri F, Coazzoli M, Zecchini S, Giovarelli M, Perrotta C, Palma CD, et al. Defects of full-length dystrophin trigger retinal neuron damage and synapse alterations by disrupting functional autophagy. Cell Mol Life Sci. 2021;78(4):1615–36. doi:10.1007/s00018-020-03598-5.
  • Pilgram GSK, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol. 2010;41(1):1–21. doi:10.1007/s12035-009-8089-5.
  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486(7403):410–4. doi:10.1038/nature11059.
  • Kamimura K, Maeda N. Glypicans and heparan sulfate in synaptic development, neural plasticity, and neurological disorders. Front Neural Circuits. 2021;15:595596. doi:10.3389/fncir.2021.595596.
  • Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev. 2018;13(1):7–12. doi:10.1186/s13064-018-0104-y.
  • Cha JY, Birsoy B, Kofron M, Mahoney E, Lang S, Wylie C, Heasman J. The role of FoxC1 in early xenopus development. Dev Dyn. 2007;236(10):2731–41. doi:10.1002/dvdy.21240.
  • Palma TD, Filippone MG, Pierantoni GM, Fusco A, Soddu S, Zannini M. Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death Disease. 2013;4(7):e729–e729. doi:10.1038/cddis.2013.262.
  • Hewitt SM, Hamada S, Monarres A, Kottical LV, Saunders GF, McDonnell TJ. Transcriptional activation of the bcl-2 apoptosis suppressor gene by the paired box transcription factor PAX8. Anticancer Res. 1997;17(5A):3211–5.
  • Bailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Publ Group. 2016;48(2):189–94. doi:10.1038/ng.3482.
  • Liu J, Wilson S, Reh T. BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev Biol. 2003;256(1):34–48. doi:10.1016/s0012-1606(02)00115-x.
  • Wolff L, Strathmann EA, Müller I, Mählich D, Veltman C, Niehoff A, Wirth B. Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci. 2021;78(13):5275–301. doi:10.1007/s00018-021-03843-5.
  • Alrafiah A, Karyka E, Coldicott I, Iremonger K, Lewis KE, Ning K, Azzouz M. Plastin 3 promotes motor neuron axonal growth and extends survival in a mouse model of spinal muscular atrophy. Mol Ther Methods Clin Dev. 2018;9:81–9. doi:10.1016/j.omtm.2018.01.007.
  • Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani AA, Racca C, Mulle C, Luca MD, Gardoni F. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun. 2015;6(1):10181. doi:10.1038/ncomms10181.
  • Javier-Torrent M, Saura CA. Conventional and non-conventional roles of non-muscle myosin II-Actin in neuronal development and degeneration. Cells. 2020;9(9):1926. doi:10.3390/cells9091926.
  • Burns ME, Sasaki T, Takai Y, Augustine GJ. Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic. J Gen Physiol. 1998;111(2):243–55. doi:10.1085/jgp.111.2.243.
  • Kneussel M, Wagner W. Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci. 2013;14(4):233–47. doi:10.1038/nrn3445.
  • Franchini L, Stanic J, Barzasi M, Zianni E, Mauceri D, Diluca M, Gardoni F. Rabphilin-3A drives structural modifications of dendritic spines induced by long-term potentiation. Cells. 2022;11(10):1616. doi:10.3390/cells11101616.
  • Kouchi Z, Kojima M. Function of SYDE C2-RhoGAP family as signaling hubs for neuronal development deduced by computational analysis. Sci Rep. 2022;12(1):4325–18. doi:10.1038/s41598-022-08147-7.
  • Li C, Takei K, Geppert M, Daniell L, Stenius K, Chapman ER, Jahn R, Camilli PD, Südhof TC. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron. 1994;13(4):885–98. doi:10.1016/0896-6273(94)90254-2.
  • Aesoy R, Muwonge H, Asrud KS, Sabir M, Witsoe SL, Bjornstad R, Kopperud RK, Hoivik EA, Doskeland SO, Bakke M, et al. Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice. PLoS One. 2018;13(7):e0200935. doi:10.1371/journal.pone.0200935.
  • Briata P, Gherzi R. Long non-coding RNA-Ribonucleoprotein networks in the post-transcriptional control of gene expression. Non-Coding RNA. 2020;6(3):40. doi:10.3390/ncrna6030040.
  • Khudayberdiev S, Soutschek M, Ammann I, Heinze A, Rust MB, Baumeister S, Schratt G. The cytoplasmic SYNCRIP mRNA interactome of mammalian neurons. RNA Biol. 2021;18(9):1252–64. doi:10.1080/15476286.2020.1830553.
  • Zhong R, He H, Jin M, Lu Z, Deng Y, Liu C, Shen N, Li J, Wang H, Ying P, et al. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. Sci Total Environ. 2022;807(Pt 1):150753. doi:10.1016/j.scitotenv.2021.150753.
  • Zollino M, Marangi G, Ponzi E, Orteschi D, Ricciardi S, Lattante S, Murdolo M, Battaglia D, Contaldo I, Mercuri E, et al. Intragenic KANSL1 mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype–phenotype correlations in a large cohort of patients. J Med Genet. 2015;52(12):804. doi:10.1136/jmedgenet-2015-103184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.