Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 30, 2023 - Issue 3
351
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Age-related effects on online and offline learning in visuo-spatial working memory

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 486-503 | Received 23 Dec 2021, Accepted 12 Mar 2022, Published online: 21 Mar 2022

References

  • Andersen, G. J., Ni, R., Bower, J. D., & Watanabe, T. (2010). Perceptual learning, aging, and improved visual performance in early stages of visual processing. Journal of Vision, 10(13), 4. https://doi.org/10.1167/10.13.4
  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of Large-Scale Brain Systems in Advanced Aging. Neuron, 56(5), 924–935. https://doi.org/10.1016/j.neuron.2007.10
  • Astle, A. T., Blighe, A. J., Webb, B. S., & McGraw, P. V. (2015). The effect of normal aging and age-related macular degeneration on perceptual learning. Journal of Vision, 15(10), 16. https://doi.org/10.1167/15.10.16
  • Bissig, D., Kaye, J., & Erten‐Lyons, D. (2020). Validation of Saturn, a free, electronic, self‐administered cognitive screening test. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 6(1 e12116). https://doi.org/10.1002/trc2.12116
  • Boe, S. G., Cassidy, R. J., McIlroy, W. E., & Graham, S. J. (2012). Single session motor learning demonstrated using a visuomotor task: Evidence from fMRI and behavioural analysis. Journal of Neuroscience Methods, 209(2), 308–319. https://doi.org/10.1016/j.jneumeth.2012.06.016
  • Bönstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L. G. (2019). A Rapid Form of Offline Consolidation in Skill Learning. Current Biology, 29(8), 1346–1351.e4. https://doi.org/10.1016/j.cub.2019.02.049
  • Born, J., Rasch, B., & Gais, S. (2006). Sleep to remember. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 12(5), 410–424. https://doi.org/10.1177/1073858406292647
  • Braver, T. S., & West, R. (2008). Working memory, executive control, and aging Craik, F. I. M., Salthouse, T. A. In The handbook of aging and cognition, 3rd ed (pp. 311–372). Psychology Press. https://psycnet.apa.org/record/2007-10440-007
  • Brown, R. M., Robertson, E. M., & Press, D. Z. (2009). Sequence skill acquisition and off-line learning in normal aging. PloS One, 4(8), e6683. https://doi.org/10.1371/journal.pone.0006683
  • Buschkuehl, M., Jaeggi, S. M., Mueller, S. T., Shah, P., & Jonides, J. (2017). Training Change Detection Leads to Substantial Task-Specific Improvement. Journal of Cognitive Enhancement, 1(4), 419–433. https://doi.org/10.1007/s41465-017-0055-y
  • Clapp, W. C., & Gazzaley, A. (2012). Distinct mechanisms for the impact of distraction and interruption on working memory in aging. Neurobiology of Aging, 33(1), 134–148. https://doi.org/10.1016/j.neurobiolaging.2010.01.012
  • Clark, R., Freedberg, M., Hazeltine, E., & Voss, M. W. (2015). Are There Age-Related Differences in the Ability to Learn Configural Responses? PLoS ONE, 10(8 e0137260). https://doi.org/10.1371/journal.pone.0137260
  • Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24(7), 1013–1019. https://doi.org/10.1016/S0197-4580(03)00030-7doi. 10.1016/S0197-4580(03)00030-7
  • Davies, G. M., & Logie, R. H. (1993). Memory in Everyday Life. Elsevier.
  • Dudai, Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35(1), 227–247. https://doi.org/10.1146/annurev-neuro-062111-150500
  • Durkina, M., Prescott, L., Furchtgott, E., Cantor, J., & Powell, D. A. (1995). Performance but not acquisition of skill learning is severely impaired in the elderly. Archives of Gerontology and Geriatrics, 20(2), 167–183. https://doi.org/10.1016/0167-4943(94)00594-Wdoi. 10.1016/0167-4943(94)00594-W
  • Eckert, M. A., Keren, N. I., Roberts, D. R., Calhoun, V. D., & Harris, K. C. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience, 4, 10. https://doi.org/10.3389/neuro.09.010.2010
  • Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Age changes in processing speed as a leading indicator of cognitive aging. Psychology and Aging, 22(3), 558–568. https://doi.org/10.1037/0882-7974.22.3.558
  • Fitzroy, A. B., Kainec, K. A., Seo, J., & Spencer, R. M. C. (2021). Encoding and consolidation of motor sequence learning in young and older adults. Neurobiology of Learning and Memory, 185, 107508. https://doi.org/10.1016/j.nlm.2021.107508
  • Flegal, K. E., Ragland, J. D., & Ranganath, C. (2019). Adaptive task difficulty influences neural plasticity and transfer of training. NeuroImage, 188, 111–121. https://doi.org/10.1016/j.neuroimage.2018.12.003
  • Garavan, H., Kelley, D., Rosen, A., Rao, S. M., & Stein, E. A. (2000). Practice-related functional activation changes in a working memory task. Microscopy Research and Technique, 51(1), 54–63. https://doi.org/10.1002/1097-0029(20001001)51:1doi. 10.1002/1097-0029(20001001)51:1<54::AID-JEMT6>3.0.CO;2-J
  • Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35), 13122–13126. https://doi.org/10.1073/pnas.0806074105
  • Gregory, M. D., Agam, Y., Selvadurai, C., Nagy, A., Vangel, M., Tucker, M., Robertson, E. M., Stickgold, R., & Manoach, D. S. (2014). Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. NeuroImage, 102(Pt 2), 666–673. https://doi.org/10.1016/j.neuroimage.2014.08.044
  • Hahn, E. A., & Lachman, M. E. (2015). Everyday experiences of memory problems and control: The adaptive role of selective optimization with compensation in the context of memory decline. Aging, Neuropsychology, and Cognition, 22(1), 25–41. https://doi.org/10.1080/13825585.2014.888391
  • Harand, C., Bertran, F., Doidy, F., Guénolé, F., Desgranges, B., Eustache, F., & Rauchs, G. (2012). How Aging Affects Sleep-Dependent Memory Consolidation? Frontiers in Neurology, 3, 8. https://doi.org/10.3389/fneur.2012.00008
  • Harrington, D. L., & Haaland, K. Y. (1992). Skill learning in the elderly: Diminished implicit and explicit memory for a motor sequence. Psychology and Aging, 7(3), 425–434. https://doi.org/10.1037//0882-7974.7.3.425
  • Howard, D. V., & Howard, J. H. (1989). Age differences in learning serial patterns: Direct versus indirect measures. Psychology and Aging, 4(3), 357–364. https://doi.org/10.1037//0882-7974.4.3.357
  • Howard, J. H., & Howard, D. V. (2013). Aging mind and brain: Is implicit learning spared in healthy aging? Frontiers in Psychology, 4, 817. https://doi.org/10.3389/fpsyg.2013.00817
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. https://doi.org/10.1073/pnas.0801268105
  • Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730–743. https://doi.org/10.1162/08989290152541403
  • Jenkins, L., & Hoyer, W. J. (2000). Instance-based automaticity and aging: Acquisition, reacquisition, and long-term retention. Psychology and Aging, 15(3), 551–565. https://doi.org/10.1037/0882-7974.15.3.551
  • King, B. R., Fogel, S. M., Albouy, G., Doyon, J., Miyahara, M., Lederman, S. J., & Sadato, N. (2013). Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Frontiers in Human Neuroscience, 7, 142. https://doi.org/10.3389/fnhum.2013.00142
  • King, B. R., Hoedlmoser, K., Hirschauer, F., Dolfen, N., & Albouy, G. (2017). Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neuroscience & Biobehavioral Reviews, 80, 1–22. https://doi.org/10.1016/j.neubiorev.2017.04.026
  • Li, X., Allen, P. A., Lien, M.-C., & Yamamoto, N. (2017). Practice makes it better: A psychophysical study of visual perceptual learning and its transfer effects on aging. Psychology and Aging, 32(1), 16–27. https://doi.org/10.1037/pag0000145
  • Li, Q., Joo, S. J., Yeatman, J. D., & Reinecke, K. (2020). Controlling for Participants’ Viewing Distance in Large-Scale, Psychophysical Online Experiments Using a Virtual Chinrest. Scientific Reports, 10(1), 904. https://doi.org/10.1038/s41598-019-57204-1
  • Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20(1), 135–141. https://doi.org/10.3758/s13423-012-0335-6
  • Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. https://doi.org/10.1037/a0020080
  • Mary, A., Bourguignon, M., Wens, V., Op de Beeck, M., Leproult, R., De Tiège, X., & Peigneux, P. (2015). Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study. NeuroImage, 104, 59–68. https://doi.org/10.1016/j.neuroimage.2014.10.010
  • Nemeth, D., & Janacsek, K. (2011). The dynamics of implicit skill consolidation in young and elderly adults. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 66(1), 15–22. https://doi.org/10.1093/geronb/gbq063
  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. http://www.ncbi.nlm.nih.gov/pubmed/12061414
  • Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y
  • Plihal, W., & Born, J. (1997). Effects of Early and Late Nocturnal Sleep on Declarative and Procedural Memory. Journal of Cognitive Neuroscience, 9(4), 534–547. https://doi.org/10.1162/jocn.1997.9.4.534
  • Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging, Practice, and Perceptual Tasks: A Diffusion Model Analysis. Psychology and Aging, 21(2), 353–371. https://doi.org/10.1037/0882-7974.21.2.353
  • Reuter-Lorenz, P. A., & Sylvester, C.-Y. C. (2005). The Cognitive Neuroscience of Working Memory and Aging Cabeza, R., Nyberg, L., Park, D. In Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 186–217). Oxford University Press. https://psycnet.apa.org/record/2004-21799-008
  • Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324–330. https://doi.org/10.3758/s13423-011-0055-3
  • Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain networks in aging: A review of functional connectivity studies. Frontiers in Psychology, 6, 663. https://doi.org/10.3389/fpsyg.2015.00663
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. https://doi.org/10.1037/0033-295x.103.3.403
  • Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. https://doi.org/10.1016/j.neurobiolaging.2008.09.023
  • Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents. Cerebral Cortex, 21(12), 2809–2819. https://doi.org/10.1093/cercor/bhr076.
  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217. https://doi.org/10.1111/j.1467-9280.1992.tb00029.x
  • Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research Craik, F. I. M., Salthouse, T. A. In The handbook of aging and cognition, 2nd ed (pp. 155–219). Erlbaum. https://psycnet.apa.org/record/2000-07017-003
  • Siegelman, N., Bogaerts, L., Kronenfeld, O., & Frost, R. (2018). Redefining “Learning” in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities? Cognitive Science, 42 3 , 692–727. https://doi.org/10.1111/cogs.12556
  • Spencer, R. M. C., Gouw, A. M., & Ivry, R. B. (2007). Age-related decline of sleep-dependent consolidation. Learning & Memory, 14(7), 480–484. https://doi.org/10.1101/lm.569407
  • Stoet, G. (2010). PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1104. https://doi.org/10.3758/BRM.42.4.1096
  • Stoet, G. (2017). PsyToolkit. Teaching of Psychology, 44(1), 24–31. https://doi.org/10.1177/0098628316677643
  • Störmer, V. S., Li, S.-C., Heekeren, H. R., & Lindenberger, U. (2013). Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visual–spatial working memory. NeuroImage, 73, 167–175. https://doi.org/10.1016/j.neuroimage.2013.02.004
  • Studebaker, G. A. (1985). A “rationalized” arcsine transform. Journal of Speech and Hearing Research, 28(3), 455–462. https://doi.org/10.1044/jshr.2803.455
  • Tagliabue, C. F., Assecondi, S., Cristoforetti, G., & Mazza, V. (2020b). Learning by task repetition enhances object individuation and memorization in the elderly. Scientific Reports, 10(1), 19957. https://doi.org/10.1038/s41598-020-75297-x
  • Tagliabue, C. F., Brignani, D., & Mazza, V. (2019). Does numerical similarity alter age-related distractibility in working memory? PLOS ONE, 14(9), e0222027. https://doi.org/10.1371/journal.pone.0222027
  • Tagliabue, C. F., Lombardi, L., & Mazza, V. (2020a). Individuation of object parts in aging. Attention, Perception, & Psychophysics, 82(5), 2703–2713. https://doi.org/10.3758/s13414-020-01996-2
  • Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280–290. https://doi.org/10.1016/j.neuron.2010.01.001
  • van Balkom, T. D., van den Heuvel, O. A., Berendse, H. W., van der Werf, Y. D., & Vriend, C. (2020). The Effects of Cognitive Training on Brain Network Activity and Connectivity in Aging and Neurodegenerative Diseases: A Systematic Review. Neuropsychology Review, 30(2), 267–286. https://doi.org/10.1007/s11065-020-09440-w
  • Vandevoorde, K., & Orban de Xivry, -J.-J. (2019). Internal model recalibration does not deteriorate with age while motor adaptation does. Neurobiology of Aging, 80, 138–153. https://doi.org/10.1016/j.neurobiolaging.2019.03.020
  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748. https://doi.org/10.1038/nature02447
  • Walker, M. P., & Stickgold, R. (2006). Sleep, Memory, and Plasticity. Annual Review of Psychology, 57(1), 139–166. https://doi.org/10.1146/annurev.psych.56.091103.070307
  • Walker, M. P., Stickgold, R., Alsop, D., Gaab, N., & Schlaug, G. (2005a). Sleep-dependent motor memory plasticity in the human brain. Neuroscience, 133(4), 911–917. https://doi.org/10.1016/j.neuroscience.2005.04.007
  • Walker, M. P., Stickgold, R., Jolesz, F. A., & Yoo, -S.-S. 2005b. The functional anatomy of sleep-dependent visual skill learning. Cerebral Cortex, 15(11), 1666–1675 . https://doi.org/10.1093/cercor/bhi043.
  • Wamsley, E. J. (2019). Memory Consolidation during Waking Rest. Trends in Cognitive Sciences, 23(3), 171–173. https://doi.org/10.1016/j.tics.2018.12.007
  • Wolf, D., Tüscher, O., Teipel, S., Mierau, A., Strüder, H., Drzezga, A., Baier, B., Binder, H., & Fellgiebel, A. (2018). Mechanisms and modulators of cognitive training gain transfer in cognitively healthy aging: Study protocol of the AgeGain study. Trials, 19(1), 337. https://doi.org/10.1186/s13063-018-2688-2
  • Yan, J. H., Abernethy, B., & Li, X. (2010). The effects of ageing and cognitive impairment on on-line and off-line motor learning. Applied Cognitive Psychology, 24(2), 200–212. https://doi.org/10.1002/acp.1551

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.