Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 31, 2024 - Issue 1
371
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the impact of healthy aging on memory for temporal duration and order

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 75-96 | Received 04 Apr 2022, Accepted 27 Aug 2022, Published online: 08 Sep 2022

References

  • Allen, T. A., Morris, A. M., Stark, S. M., Fortin, N. J., & Stark, C. E. L. (2015). Memory for sequences of events impaired in typical aging. Learning & Memory, 22(3), 138–148. https://doi.org/10.1101/lm.036301.114
  • Barnett, A. J., O’Neil, E. B., Watson, H. C., & Lee, A. C. H. (2014). The human hippocampus is sensitive to the durations of events and intervals within a sequence. Neuropsychologia, 64, 1–12. https://doi.org/10.1016/j.neuropsychologia.2014.09.011
  • Bellmund, J. L., Deuker, L., & Doeller, C. F. (2019). Mapping sequence structure in the human lateral entorhinal cortex. eLife, 8, e45333. https://doi.org/10.7554/eLife.45333
  • Bellmund, J. L. S., Polti, I., & Doeller, C. F. (2020). Sequence memory in the hippocampal-entorhinal region. Journal of Cognitive Neuroscience, 32(11), 2056–2070. https://doi.org/10.1162/jocn_a_01592
  • Blachstein, H., Greenstein, Y., & Vakil, E. (2012). Aging and temporal order memory: A comparison of direct and indirect measures. Journal of Clinical and Experimental Neuropsychology, 34(1), 107–112. https://doi.org/10.1080/13803395.2011.625352
  • Braver, T. S., & West, R. (2008) Working memory, executive control, and aging. In Craik, F. I. M., Salthouse, T. A. (Eds.), The Handbook of Aging and Cognition: Third Edition (1st ed.) (pp. 311-372). Psychology Press. https://doi.org/10.4324/9780203837665.ch7
  • Büchel, C., Dolan, R. J., Armony, J. L., & Friston, K. J. (1999). Amygdala–hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. Journal of Neuroscience, 24(19), 10869–10876. https://doi.org/10.1523/JNEUROSCI.19-24-10869.1999
  • Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701–710. https://doi.org/10.1038/s41583-018-0068-2
  • Cabeza, R., Anderson, N. D., Houle, S., Mangels, J. A., & Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: A positron emission tomography study. Journal of Cognitive Neuroscience, 12(1), 197–206. https://doi.org/10.1162/089892900561832
  • Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 628–652). Oxford University Press.
  • Cabeza, R., Mangels, J., Nyberg, L., Habib, R., Houle, S., McIntosh, A. R., & Tulving, E. (1997). Brain regions differentially involved in remembering what and when: A PET study. Neuron, 19(4), 863–870. https://doi.org/10.1016/S0896-6273(00)80967-8
  • Cardenas, V., Chao, L., Studholme, C., Yaffe, K., Miller, B., Madison, C., Buckley, S., Mungas, D., Schuff, N., & Weiner, M. (2011). Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiology of Aging, 32(4), 572–580. https://doi.org/10.1016/j.neurobiolaging.2009.04.011
  • Carrasco, M. C., Bernal, M. C., & Redolat, R. (2001). Time estimation and aging: A comparison between young and elderly adults. The International Journal of Aging and Human Development, 52(2), 91–101. https://doi.org/10.2190/7NFL-CGCP-G9E1-P0H1
  • Castel, A. D., & Craik, F. I. M. (2003). The effects of aging and divided attention on memory for item and associative information. Psychology and Aging, 18(4), 873–885. https://doi.org/10.1037/0882-7974.18.4.873
  • Cheng, R.-K., Dyke, A. G., McConnell, M. W., & Meck, W. H. (2011). Categorical scaling of duration as a function of temporal context in aged rats. Brain Research, 1381, 175–186. https://doi.org/10.1016/j.brainres.2011.01.044
  • Coelho, M., Ferreira, J. J., Dias, B., Sampaio, C., Pavão Martins, I., & Castro-Caldas, A. (2004). Assessment of time perception: The effect of aging. Journal of the International Neuropsychological Society: JINS, 10(3), 332–341. https://doi.org/10.1017/S1355617704103019
  • Craik, F. I., & Hay, J. F. (1999). Aging and judgments of duration: Effects of task complexity and method of estimation. Perception & Psychophysics, 61(3), 549–560. https://doi.org/10.3758/BF03211972
  • Craik, F. I. M., & Rose, N. S. (2012). Memory encoding and aging: A neurocognitive perspective. Neuroscience and Biobehavioral Reviews, 36(7), 1729–1739. https://doi.org/10.1016/j.neubiorev.2011.11.007
  • Daselaar, S., & Cabeza, R. (2013). Age-related decline in working memory and episodic memory: Contributions of the prefrontal cortex and medial temporal lobes. In K. N. Ochsner & S. Kosslyn (Eds.), The Oxford Handbook of Cognitive Neuroscience (Vol. 1, pp. 456–472). Oxford University Press. Core Topics.
  • Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: The role of prediction and context. Trends in Cognitive Sciences, 19(2), 92–99. https://doi.org/10.1016/j.tics.2014.12.004
  • Dede, A. J., Frascino, J. C., Wixted, J. T., & Squire, L. R. (2016). Learning and remembering real-world events after medial temporal lobe damage. Proceedings of the National Academy of Sciences of the United States of America, 113(47), 13480–13485. https://doi.org/10.1073/pnas.1617025113
  • Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109–120. https://doi.org/10.1016/j.neuron.2004.08.028
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Fjell, A. M., & Walhovd, K. B. Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences. Reviews in the Neurosciences, 21(3). https://doi.org/10.1515/REVNEURO.2010.21.3.187
  • Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5(5), 458–462. https://doi.org/10.1038/nn834
  • Goldman-Rakic, P. S., Selemon, L. D., & Schwartz, M. L. (1984). Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12(3), 719–743. https://doi.org/10.1016/0306-4522(84)90166-0
  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews. Neuroscience, 13(7), 491–505. https://doi.org/10.1038/nrn3256
  • Hannesson, D. K., Howland, J. G., & Phillips, A. G. (2004). Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(19), 4596–4604. https://doi.org/10.1523/JNEUROSCI.5517-03.2004
  • Harrington, D. L., Boyd, L. A., Mayer, A. R., Sheltraw, D. M., Lee, R. R., Huang, M., & Rao, S. M. (2004). Neural representation of interval encoding and decision making. Cognitive Brain Research, 21(2), 193–205. https://doi.org/10.1016/j.cogbrainres.2004.01.010
  • Harrington, D. L., Zimbelman, J. L., Hinton, S. C., & Rao, S. M. (2010). Neural modulation of temporal encoding, maintenance, and decision processes. Cerebral Cortex, 20(6), 1274–1285. https://doi.org/10.1093/cercor/bhp194
  • Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews. Neuroscience, 5, 87–96. https://doi.org/10.1038/nrn1323
  • Heys, J. G., & Dombeck, D. A. (2018). Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nature Neuroscience, 21(11), 1574–1582. https://doi.org/10.1038/s41593-018-0252-8
  • Hodges, J. R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33(4), 441–459. https://doi.org/10.1016/0028-3932(94)00127-B
  • Howard, M. W., & Eichenbaum, H. (2015). Time and space in the hippocampus. Brain Research, 1621, 345–354. https://doi.org/10.1016/j.brainres.2014.10.069
  • Hsieh, L.-T., & Ranganath, C. (2015). Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network. NeuroImage, 121, 78–90. https://doi.org/10.1016/j.neuroimage.2015.07.040
  • Jackson, P. A., Kesner, R. P., & Amann, K. (1998). Memory for duration: Role of Hippocampus and medial prefrontal cortex. Neurobiology of Learning and Memory, 70(3), 328–348. https://doi.org/10.1006/nlme.1998.3859
  • Jenkins, L. J., & Ranganath, C. (2010). Prefrontal and Medial Temporal Lobe Activity at Encoding Predicts Temporal Context Memory. Journal of Neuroscience, 30(46), 15558–15565. https://doi.org/10.1523/JNEUROSCI.1337-10.2010
  • Kalm, K., Davis, M. H., & Norris, D. (2013). Individual sequence representations in the medial temporal lobe. Journal of Cognitive Neuroscience, 25(7), 1111–1121. https://doi.org/10.1162/jocn_a_00378
  • Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116(2), 286–290. https://doi.org/10.1037/0735-7044.116.2.286
  • Kesner, R. P., & Holbrook, T. (1987). Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions. Neuropsychologia, 25(4), 653–664. https://doi.org/10.1016/0028-3932(87)90056-X
  • Kessels, R. P. C., Hobbel, D., & Postma, A. (2007). Aging, context memory and binding: A comparison of “what, where and when” in young and older adults. The International Journal of Neuroscience, 117(6), 795–810. https://doi.org/10.1080/00207450600910218
  • Kumar, S., Joseph, S., Gander, P. E., Barascud, N., Halpern, A. R., & Griffiths, T. D. (2016). A brain system for auditory working memory. Journal of Neuroscience, 36(16), 4492–4505. https://doi.org/10.1523/JNEUROSCI.4341-14.2016
  • Lee, A. C. H., Thavabalasingam, S., Alushaj, D., Çavdaroğlu, B., & Ito, R. (2020). The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia, 137, 107300. https://doi.org/10.1016/j.neuropsychologia.2019.107300
  • Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17(4), 677–689. https://doi.org/10.1037/0882-7974.17.4.677
  • Lewis, P. A., & Miall, R. C. (2003). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41(12), 1583–1592. https://doi.org/10.1016/s0028-3932(03)00118-0
  • Loo, C., Lee, A. C. H., & Buchsbaum, B. R. (2021). Multivariate fMRI signatures of learning in a Hebb repetition paradigm with tone sequences. Frontiers in Neurology, 12, 674275. https://doi.org/10.3389/fneur.2021.674275
  • Lositsky, O., Chen, J., Toker, D., Honey, C. J., Shvartsman, M., Poppenk, J. L., Hasson, U., & Norman, K. A. (2016). Neural pattern change during encoding of a narrative predicts retrospective duration estimates. eLife, 5, e16070. https://doi.org/10.7554/eLife.16070
  • Lustig, C., & Meck, W. H. (2001). Paying attention to time as one gets older. Psychological Science, 12(6), 478–484. https://doi.org/10.1111/1467-9280.00389
  • Lustig, C., & Meck, W. H. (2011). Modality differences in timing and temporal memory throughout the lifespan. Brain and Cognition, 77(2), 298–303. https://doi.org/10.1016/j.bandc.2011.07.007
  • MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33(36), 14607–14616. https://doi.org/10.1523/JNEUROSCI.1537-13.2013
  • MacDonald, C., Lepage, K., Eden, U., & Eichenbaum, H. (2011). Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events. Neuron, 71(4), 737–749. https://doi.org/10.1016/j.neuron.2011.07.012
  • Mayes, A. R., Isaac, C. L., Holdstock, J. S., Hunkin, N. M., Montaldi, D., Downes, J. J., Macdonald, C., Cezayirli, E., & Roberts, J. N. (2001). Memory for single items, word pairs, and temporal order of different kinds in a patient with selective hippocampal lesions. Cognitive Neuropsychology, 18(2), 97–123. https://doi.org/10.1080/02643290125897
  • McAndrews, M. P., & Milner, B. (1991). The frontal cortex and memory for temporal order. Neuropsychologia, 29(9), 849–859. https://doi.org/10.1016/0028-3932(91)90051-9
  • Meyers, J. E., & Meyers, K. R. (1995). Rey Complex Figure Test and Recognition Trial. Par.
  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10(1–2), 197–206. https://doi.org/10.1016/S0926-6410(00)00029-X
  • Montchal, M. E., Reagh, Z. M., & Yassa, M. A. (2019). Precise temporal memories are supported by the lateral entorhinal cortex in humans. Nature Neuroscience, 22(2), 284–288. https://doi.org/10.1038/s41593-018-0303-1
  • Murray, B. D., Anderson, M. C., & Kensinger, E. A. (2015). Older adults can suppress unwanted memories when given an appropriate strategy. Psychology and Aging, 30(1), 9–25. https://doi.org/10.1037/a0038611
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Naveh-Benjamin, M., Guez, J., Kilb, A., & Reedy, S. (2004). The associative memory deficit of older adults: further support using face-name associations. Psychology and Aging, 19(3), 541–546. https://doi.org/10.1037/0882-7974.19.3.541
  • Naya, Y., Chen, H., Yang, C., & Suzuki, W. A. (2017). Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13555–13560. https://doi.org/10.1073/pnas.1712711114
  • Newman, M. C., Allen, J. J. B., & Kaszniak, A. W. (2001). Tasks for assessing memory for temporal order versus memory for items in aging. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 8(1), 72–78. https://doi.org/10.1076/anec.8.1.72.849
  • Nichelli, P., Clark, K., Hollnagel, C., & Grafman, J. (1995). Duration processing after frontal lobe lesions. Annals of the New York Academy of Sciences, 769, 183–190. https://doi.org/10.1111/j.1749-6632.1995.tb38139.x
  • Ninokura, Y., Mushiake, H., & Tanji, J. (2004). Integration of temporal order and object information in the monkey lateral prefrontal cortex. Journal of Neurophysiology, 91(1), 555–560. https://doi.org/10.1152/jn.00694.2003
  • Old, S. R., & Naveh-Benjamin, M. (2008). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging, 23(2), 467–472. https://doi.org/10.1037/0882-7974.23.2.467
  • Palombo, D. J., Reid, A. G., Thavabalasingam, S., Hunsberger, R., Lee, A. C. H., & Verfaellie, M. (2020). The human medial temporal lobe is necessary for remembering durations within a sequence of events but not durations of individual events. Journal of Cognitive Neuroscience, 32(3), 497–507. https://doi.org/10.1162/jocn_a_01489
  • Pastalkova E, Itskov V, Amarasingham A and Buzsáki G. (2008). Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science, 321(5894), 1322–1327. 10.1126/science.1159775
  • Peterson, D. J., & Naveh-Benjamin, M. (2016). The role of aging in intra-item and item-context binding processes in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(11), 1713–1730. https://doi.org/10.1037/xlm0000275
  • Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings. Biological Sciences/The Royal Society, 246(1317), 299–306. https://doi.org/10.1098/rspb.1991.0158
  • Piolino, P., Desgranges, B., Benali, K., & Eustache, F. (2002). Episodic and semantic remote autobiographical memory in ageing. Memory, 10(4), 239–257. https://doi.org/10.1080/09658210143000353
  • Rakitin, B. C., Stern, Y., & Malapani, C. (2005). The effects of aging on time reproduction in delayed free-recall. Brain and Cognition, 58(1), 17–34. https://doi.org/10.1016/j.bandc.2004.09.006
  • Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 501–511. https://doi.org/10.1016/j.neuroimage.2010.03.020
  • Roberts, J. M., Ly, M., Murray, E., & Yassa, M. A. (2014). Temporal discrimination deficits as a function of lag interference in older adults. Hippocampus, 24(10), 1189–1196. https://doi.org/10.1002/hipo.22303
  • Rolls, E. T. (2013). A quantitative theory of the functions of the hippocampal CA3 network in memory. Frontiers in Cellular Neuroscience, 7, 98. https://doi.org/10.3389/fncel.2013.00098
  • Rotblatt, L. J., Sumida, C. A., Van Etten, E. J., Turk, E. P., Tolentino, J. C., & Gilbert, P. E. (2015). Differences in temporal order memory among young, middle-aged, and older adults may depend on the level of interference. Frontiers in Aging Neuroscience, 7, 28. https://doi.org/10.3389/fnagi.2015.00028
  • Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535–543 https://doi.org/10.1037/0894-4105.8.4.535.
  • Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28(8), 803–813. https://doi.org/10.1016/0028-3932(90)90004-8
  • St. Jacques, P., Rubin, D. C., LaBar, K. S., & Cabeza, R. (2008). The Short and Long of It: Neural Correlates of Temporal-order Memory for Autobiographical Events. Journal of Cognitive Neuroscience, 20(7), 1327–1341. https://doi.org/10.1162/jocn.2008.20091
  • Sumida, C. A., Holden, H. M., Van Etten, E. J., Wagner, G. M., Hileman, J. D., & Gilbert, P. E. (2016). Who, when, and where? Age-related differences on a new memory test. Learning & Memory, 23(1), 38–41. https://doi.org/10.1101/lm.039313.115
  • Swanson, L. W. (1981). A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Research, 217(1), 150–154. https://doi.org/10.1016/0006-8993(81)90192-X
  • Taylor, K. J., Henson, R. N. A., & Graham, K. S. (2007). Recognition memory for faces and scenes in amnesia: Dissociable roles of medial temporal lobe structures. Neuropsychologia, 45(11), 2428–2438. https://doi.org/10.1016/j.neuropsychologia.2007.04.004
  • Thavabalasingam, S., O’Neil, E. B., & Lee, A. C. H. (2018). Multivoxel pattern similarity suggests the integration of temporal duration in hippocampal event sequence representations. NeuroImage, 178, 136–146. https://doi.org/10.1016/j.neuroimage.2018.05.036
  • Thavabalasingam, S., O’Neil, E. B., Tay, J., Nestor, A., & Lee, A. C. H. (2019). Evidence for the incorporation of temporal duration information in human hippocampal long-term memory sequence representations. Proceedings of the National Academy of Sciences, 116(13), 6407–6414. https://doi.org/10.1073/pnas.1819993116
  • Tolentino, J. C., Pirogovsky, E., Luu, T., Toner, C. K., & Gilbert, P. E. (2012). The effect of interference on temporal order memory for random and fixed sequences in nondemented older adults. Learning & Memory, 19(6), 251–255. https://doi.org/10.1101/lm.026062.112
  • Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature, 561(7721), 57–62. https://doi.org/10.1038/s41586-018-0459-6
  • Tsukiura, T., Sekiguchi, A., Yomogida, Y., Nakagawa, S., Shigemune, Y., Kambara, T., Akitsuki, Y., Taki, Y., & Kawashima, R. (2011). Effects of aging on hippocampal and anterior temporal activations during successful retrieval of memory for face–name associations. Journal of Cognitive Neuroscience, 23(1), 200–213. https://doi.org/10.1162/jocn.2010.21476
  • Tubridy, S., & Davachi, L. (2011). Medial temporal lobe contributions to episodic sequence encoding. Cerebral Cortex, 21(2), 272–280. https://doi.org/10.1093/cercor/bhq092
  • Turgeon, M., Lustig, C., & Meck, W. H. (2016). Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy. Frontiers in Aging Neuroscience, 8. https://doi.org/10.3389/fnagi.2016.00102
  • Turk-Browne, N. B., Simon, M. G., & Sederberg, P. B. (2012). Scene representations in parahippocampal cortex depend on temporal context. Journal of Neuroscience, 32(21), 7202–7207. https://doi.org/10.1523/JNEUROSCI.0942-12.2012
  • Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2009). Perception of temporal order: The effects of age, sex, and cognitive factors. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16(2), 183–202. https://doi.org/10.1080/13825580802411758
  • Wallenstein, G. V., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neurosciences, 21(8), 317–323. https://doi.org/10.1016/S0166-2236(97)01220-4
  • Wang, F., & Diana, R. A. (2017). Neural correlates of temporal context retrieval for abstract scrambled phrases: Reducing narrative and familiarity-based strategies. Brain Research, 1655, 128–137. https://doi.org/10.1016/j.brainres.2016.11.017
  • Wechsler, D. (2009). Wechsler Memory Scale (4th ed.). Pearson.
  • Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence (2nd ed.). Pearson.
  • Xu, R., & Church, R. M. (2017). Age-related changes in human and nonhuman timing. Timing & Time Perception, 5(3–4), 261–279. https://doi.org/10.1163/22134468-00002092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.