Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 31, 2024 - Issue 5
127
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evidence for an age-related decline in feature-based attention

ORCID Icon, ORCID Icon & ORCID Icon
Pages 846-868 | Received 12 Feb 2023, Accepted 11 Oct 2023, Published online: 20 Oct 2023

References

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). arXiv Preprint arXiv:1406.5823. https://doi.org/10.18637/jss.v067.i01
  • Bedini, M., & Baldauf, D. (2021). Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. European Journal of Neuroscience, 54(4), 5462–5506. https://doi.org/10.1111/ejn.15393
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85. https://doi.org/10.1037/0882-7974.17.1.85
  • Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 2212–2223. https://doi.org/10.1016/j.neuropsychologia.2012.05.025
  • Carson, N., Leach, L., & Murphy, K. J. (2018). A re‐examination of Montreal Cognitive Assessment (MoCA) cutoff scores. International Journal of Geriatric Psychiatry, 33(2), 379–388. https://doi.org/10.1002/gps.4756
  • Cerella, J. (1985). Information processing rates in the elderly. Psychological Bulletin, 98(1), 67. https://doi.org/10.1037/0033-2909.98.1.67
  • Clapp, W. C., & Gazzaley, A. (2012). Distinct mechanisms for the impact of distraction and interruption on working memory in aging. Neurobiology of Aging, 33(1), 134–148. https://doi.org/10.1016/j.neurobiolaging.2010.01.012
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155. https://doi.org/10.1037/0033-2909.112.1.155
  • Comalli, P. E., Jr., Wapner, S., & Werner, H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. The Journal of Genetic Psychology, 100(1), 47–53. https://doi.org/10.1080/00221325.1962.10533572
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371. https://doi.org/10.1037/0096-3445.122.3.371
  • Deiber, M.-P., Rodriguez, C., Jaques, D., Missonnier, P., Emch, J., Millet, P., & Ibanez, V. (2010). Aging effects on selective attention-related electroencephalographic patterns during face encoding. Neuroscience, 171(1), 173–186. https://doi.org/10.1016/j.neuroscience.2010.08.051
  • Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12(1), 45–75. https://doi.org/10.1016/0273-2297(92)90003-K
  • Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: Results from the United Kingdom health and lifestyle survey. Psychology and Aging, 21(1), 62. https://doi.org/10.1037/0882-7974.21.1.62
  • Dykiert, D., Der, G., Starr, J. M., Deary, I. J., & Bayer, A. (2012). Age differences in intra-individual variability in simple and choice reaction time: Systematic review and meta-analysis. Plos One, 7(10), e45759. https://doi.org/10.1371/journal.pone.0045759
  • Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychological Science, 26(9), 1497–1510. https://doi.org/10.1177/0956797615594896
  • Gamboz, N., Russo, R., & Fox, E. (2002). Age differences and the identity negative priming effect: An updated meta-analysis. Psychology and Aging, 17(3), 525. https://doi.org/10.1037/0882-7974.17.3.525
  • Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35), 13122–13126. https://doi.org/10.1073/pnas.0806074105
  • Gazzaley, A., Cooney, J. W., Rissman, J., & D’esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298–1300. https://doi.org/10.1038/nn1543
  • Geweke, F., Li, S.-C., & Störmer, V. (2018). Feature-based attention is constrained to attended locations in older adults. Journal of Vision, 18(10), 306. https://doi.org/10.1167/18.10.306
  • Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. Neuroimage, 19(3), 496–512. https://doi.org/10.1016/S1053-8119(03)00162-9
  • Gillebert, C. R., Caspari, N., Wagemans, J., Peeters, R., Dupont, P., & Vandenberghe, R. (2012). Spatial stimulus configuration and attentional selection: Extrastriate and superior parietal interactions. Cerebral Cortex, 23(12), 2840–2854. (New York, N.Y. : 1991). https://doi.org/10.1093/cercor/bhs263
  • Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y.-H., Meyer, J. R., & Mesulam, M.-M. (1999). A large-scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain A Journal of Neurology, 122(6), 1093–1106. https://doi.org/10.1093/brain/122.6.1093
  • Gottlob, L. R., & Madden, D. J. (1998). Time course of allocation of visual attention after equating for sensory differences: An age-related perspective. Psychology and Aging, 13(1), 138. https://doi.org/10.1037/0882-7974.13.1.138
  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491–505. https://doi.org/10.1038/nrn3256
  • Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., & Haxby, J. V. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience, 14(3), 1450–1462. https://doi.org/10.1523/JNEUROSCI.14-03-01450.1994
  • Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., & Yantis, S. (2010). Control of spatial and feature-based attention in frontoparietal cortex. Journal of Neuroscience, 30(43), 14330–14339. https://doi.org/10.1523/JNEUROSCI.4248-09.2010
  • Hartley, A. A., Kieley, J. M., & Slabach, E. H. (1990). Age differences and similarities in the effects of cues and prompts. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 523. https://doi.org/10.1037/0096-1523.16.3.523
  • Hasher, L., Lustig, C., & Zacks, R. (2007). Inhibitory mechanisms and the control of attention.
  • Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of Learning and Motivation, 22, 193–225. https://doi.org/10.1016/S0079-7421(08)60041-9
  • Haupt, M., Napiórkowski, N., Sorg, C., Müller, H. J., & Finke, K. (2019). Predictability of salient distractor increases top-down control in healthy younger and older adults. bioRxiv, 617712. https://doi.org/10.1101/617712
  • Hommel, B., Li, K. Z. H., & Li, S.-C. (2004). Visual search across the life span. Developmental Psychology, 40(4), 545. https://doi.org/10.1037/0012-1649.40.4.545
  • Kramer, A. F., Hahn, S., Irwin, D. E., & Theeuwes, J. (2000). Age differences in the control of looking behavior: Do you know where your eyes have been? Psychological Science, 11(3), 210–217. https://doi.org/10.1111/1467-9280.00243
  • Lanssens, A., Pizzamiglio, G., Mantini, D., & Gillebert, C. R. (2020). Role of the dorsal attention network in distracter suppression based on features. Cognitive Neuroscience, 11(1–2), 37–46. https://doi.org/10.1080/17588928.2019.1683525
  • Li, S.-C. (2005). Neurocomputational perspectives linking neuromodulation, processing noise, representational distinctiveness, and cognitive aging. In R. Cabeza . (Ed.) Cognitive Neuroscience of Aging: Linking cognitive and cerebral aging (pp. 354–379). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195156744.003.0015
  • Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479–486. https://doi.org/10.1016/S1364-6613(00)01769-1
  • Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339. https://doi.org/10.1037/0882-7974.9.3.339
  • MacLeod, C. M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin, 109(2), 163. https://doi.org/10.1037/0033-2909.109.2.163
  • Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R., & Huettel, S. A. (2007). Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiology of Aging, 28(3), 459–476. https://doi.org/10.1016/j.neurobiolaging.2006.01.005
  • Madden, D. J., & Whiting, W. L. (2004). Age-related changes in visual attention. Advances in Cell Aging and Gerontology, 15, 41–88.
  • Madden, D. J., Whiting, W. L., Cabeza, R., & Huettel, S. A. (2004). Age-related preservation of top-down attentional guidance during visual search. Psychology and Aging, 19(2), 304. https://doi.org/10.1037/0882-7974.19.2.304
  • Meyyappan, S., Rajan, A., Mangun, G. R., & Ding, M. (2021). Role of Inferior Frontal Junction (IFJ) in the control of feature versus spatial attention. Journal of Neuroscience, 41(38), 8065–8074. https://doi.org/10.1523/JNEUROSCI.2883-20.2021
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I.,& Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Nguyen-Tri, D., Overbury, O., & Faubert, J. (2003). The role of lenticular senescence in age-related color vision changes. Investigative Ophthalmology & Visual Science, 44(8), 3698–3704. https://doi.org/10.1167/iovs.02-1191
  • Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M.-M., Frackowiak, R. S., & Frith, C. D. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain: A Journal of Neurology, 120(3), 515–533. https://doi.org/10.1093/brain/120.3.515
  • O’Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C. R., & Markus, H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638. https://doi.org/10.1212/WNL.57.4.632
  • Park, J., Carp, J., Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Huang, C.-M., & Park, D. C. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. Journal of Neuroscience, 32(6), 2154–2158. https://doi.org/10.1523/JNEUROSCI.4494-11.2012
  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299. https://doi.org/10.1037/0882-7974.17.2.299
  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60(1), 173. https://doi.org/10.1146/annurev.psych.59.103006.093656
  • Pehlivanoglu, D., Duarte, A., & Verhaeghen, P. (2020). Multiple identity tracking strategies vary by age: An ERP study. Neuropsychologia, 138, 107357. https://doi.org/10.1016/j.neuropsychologia.2020.107357
  • Phillips, S., & Takeda, Y. (2010). Frontal–parietal synchrony in elderly EEG for visual search. International Journal of Psychophysiology, 75(1), 39–43. https://doi.org/10.1016/j.ijpsycho.2009.11.001
  • Quigley, C., Andersen, S. K., Schulze, L., Grunwald, M., & Müller, M. M. (2010). Feature-selective attention: Evidence for a decline in old age. Neuroscience Letters, 474(1), 5–8. https://doi.org/10.1016/j.neulet.2010.02.053
  • Quigley, C., & Müller, M. M. (2014). Feature-selective attention in healthy old age: A selective decline in selective attention? Journal of Neuroscience, 34(7), 2471–2476. https://doi.org/10.1523/JNEUROSCI.2718-13.2014
  • Rabbitt, P., Mogapi, O., Scott, M., Thacker, N., Lowe, C., Horan, M., & Lunn, D. (2007). Effects of global atrophy, white matter lesions, and cerebral blood flow on age-related changes in speed, memory, intelligence, vocabulary, and frontal function. Neuropsychology, 21(6), 684. https://doi.org/10.1037/0894-4105.21.6.684
  • Rabbitt, P., Scott, M., Lunn, M., Thacker, N., Lowe, C., Pendleton, N., & Jackson, A. (2007). White matter lesions account for all age-related declines in speed but not in intelligence. Neuropsychology, 21(3), 363. https://doi.org/10.1037/0894-4105.21.3.363
  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59. https://doi.org/10.1037/0033-295X.85.2.59
  • Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356. https://doi.org/10.1111/1467-9280.00067
  • Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19(2), 278. https://doi.org/10.1037/0882-7974.19.2.278
  • R Core Team. (2021). R A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182. https://doi.org/10.1111/j.1467-8721.2008.00570.x
  • Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251. https://doi.org/10.1016/j.conb.2005.03.016
  • Robertson, I. H. (2013). A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiology of Aging, 34(1), 298–308. https://doi.org/10.1016/j.neurobiolaging.2012.05.019
  • Robertson, I. H. (2014). A right hemisphere role in cognitive reserve. Neurobiology of Aging, 35(6), 1375–1385. https://doi.org/10.1016/j.neurobiolaging.2013.11.028
  • Rowe, G., Valderrama, S., Hasher, L., & Lenartowicz, A. (2006). Attentional disregulation: A benefit for implicit memory. Psychology and Aging, 21(4), 826. https://doi.org/10.1037/0882-7974.21.4.826
  • Salthouse, T. A. (1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22(7), 811–821. https://doi.org/10.1080/00140137908924659
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403. https://doi.org/10.1037/0033-295X.103.3.403
  • Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1–3), 35–54. https://doi.org/10.1016/S0301-0511(00)00052-1
  • Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(5), 754–760. https://doi.org/10.1017/S1355617710000706
  • Schenkluhn, B., Ruff, C. C., Heinen, K., & Chambers, C. D. (2008). Parietal stimulation decouples spatial and feature-based attention. Journal of Neuroscience, 28(44), 11106–11110. https://doi.org/10.1523/JNEUROSCI.3591-08.2008
  • Schmitz, T. W., Cheng, F. H. T., & De Rosa, E. (2010). Failing to ignore: Paradoxical neural effects of perceptual load on early attentional selection in normal aging. Journal of Neuroscience, 30(44), 14750–14758. https://doi.org/10.1523/JNEUROSCI.2687-10.2010
  • Schmolesky, M. T., Wang, Y., Pu, M., & Leventhal, A. G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature Neuroscience, 3(4), 384–390. https://doi.org/10.1038/73957
  • Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research.
  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005
  • Shulman, G. L., Ollinger, J. M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Petersen, S. E., & Corbetta, M. (1999). Areas involved in encoding and applying directional expectations to moving objects. Journal of Neuroscience, 19(21), 9480–9496. https://doi.org/10.1523/JNEUROSCI.19-21-09480.1999
  • Smith, G. A., & Brewer, N. (1995). Slowness and age: Speed-accuracy mechanisms. Psychology and Aging, 10(2), 238. https://doi.org/10.1037/0882-7974.10.2.238
  • Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377. https://doi.org/10.1037/a0018022
  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460. https://doi.org/10.1017/S1355617702813248
  • Talsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: Effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62(2), 249–261. https://doi.org/10.1016/j.ijpsycho.2006.04.006
  • Theisen, M., Lerche, V., von Krause, M., & Voss, A. (2021). Age differences in diffusion model parameters: A meta-analysis. Psychological Research, 85(5), 2012–2021. https://doi.org/10.1007/s00426-020-01371-8
  • Vallesi, A., Tronelli, V., Lomi, F., & Pezzetta, R. (2021). Age differences in sustained attention tasks: A meta-analysis. Psychonomic Bulletin & Review, 28(6), 1755–1775. https://doi.org/10.3758/s13423-021-01908-x
  • Verhaeghen, P. (2011). Aging and executive control: Reports of a demise greatly exaggerated. Current Directions in Psychological Science, 20(3), 174–180. https://doi.org/10.1177/0963721411408772
  • Verhaeghen, P., & De Meersman, L. (1998). Aging and the negative priming effect: A meta-analysis. American Psychological Association.
  • Wang, Y., Fu, S., Greenwood, P., Luo, Y., & Parasuraman, R. (2012). Perceptual load, voluntary attention, and aging: An event-related potential study. International Journal of Psychophysiology, 84(1), 17–25. https://doi.org/10.1016/j.ijpsycho.2012.01.002
  • West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179–189. https://doi.org/10.1111/1469-8986.3720179
  • Whiting, W. L., Madden, D. J., & Babcock, K. J. (2007). Overriding age differences in attentional capture with top-down processing. Psychology and Aging, 22(2), 223. https://doi.org/10.1037/0882-7974.22.2.223
  • Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. https://doi.org/10.3389/fninf.2013.00014
  • Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35(1), 205. https://doi.org/10.1037/0012-1649.35.1.205
  • Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., & Bennett, D. A. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17(2), 179. https://doi.org/10.1037/0882-7974.17.2.179
  • Zanto, T. P., & Gazzaley, A. (2019). Aging of the frontal lobe. Handbook of Clinical Neurology, 163, 369–389.
  • Zanto, T. P., & Gazzeley, A. (2019). Aging of the frontal lobe. In M. D’Esposito & J. H. Grafman (Eds.). Handbook of Clinical Neurology (pp. 369–389). Elsevier. https://doi.org/10.1016/B978-0-12-804281-6.00020-3
  • Zanto, T. P., Toy, B., & Gazzaley, A. (2010). Delays in neural processing during working memory encoding in normal aging. Neuropsychologia, 48(1), 13–25. https://doi.org/10.1016/j.neuropsychologia.2009.08.003
  • Zeef, E. J., Sonke, C. J., Kok, A., Buiten, M. M., & Kenemans, J. L. (1996). Perceptual factors affecting age‐related differences in focused attention: Performance and psychophysiological analyses. Psychophysiology, 33(5), 555–565. https://doi.org/10.1111/j.1469-8986.1996.tb02432.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.