Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 21, 2015 - Issue 3
318
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of a macro-scale model from a meso-scale model for cell culture population dynamics

&
Pages 228-250 | Received 30 Dec 2013, Accepted 24 May 2014, Published online: 23 Jun 2014

References

  • Editors of The American Heritage Dictionaries, The American Heritage Stedman’s Medical Dictionary, Houghton Mifflin, Boston, MA, 1995.
  • M.A. Henson, Dynamic modeling of microbial cell populations, Curr. Opin. Biotechnol. 14 (2003), pp. 460–467. doi:10.1016/S0958-1669(03)00104-6
  • K. Zygourakis, R. Bizios, and P. Markenscoff, Proliferation of anchorage-dependent contact-inhibited cells: development of theoretical models based on cellular automata, Biotechnol. Bioeng. 38 (1991), pp. 459–470. doi:10.1002/bit.260380504
  • G. Cheng, B.B. Youssef, P. Markenscoff, and K. Zygourakis, Cell population dynamics modulate the rates of tissue growth processes, Biophys. J. 90 (2006), pp. 713–724. doi:10.1529/biophysj.105.063701
  • M.J. Piotrowska and S.D. Angus, A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth, J. Theor. Biol. 258 (2009), pp. 165–178. doi:10.1016/j.jtbi.2009.02.008
  • Y. Lee, S. Kouvroukoglou, L.V. McIntire, and K. Zygourakis, A cellular automaton model for the proliferation of migrating contact-inhibited cells, Biophys. J. 69 (1995), pp. 1284–1298. doi:10.1016/S0006-3495(95)79996-9
  • H. Hatzikirou and A. Deutsch, Cellular automata as microscopic models of cell migration in heterogeneous environments, Multiscale Modeling Dev. Syst. 81 (2008), pp. 401–434. doi:10.1016/S0070-2153(07)81014-3
  • N. Garijo, R. Manzano, R. Osta, and M.A. Perez, Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells, J. Theor. Biol. 314 (2012), pp. 1–9. doi:10.1016/j.jtbi.2012.08.004
  • A. Ducrot, F.L. Foll, P. Magal, H. Murakawa, J. Pasquier, and G.F. Webb, An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Math. Models Methods Appl. Sci. 21 (2011), pp. 871–892. doi:10.1142/S0218202511005404
  • N.J. Armstrong, K.J. Painter, and J.A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol. 243 (2006), pp. 98–113. doi:10.1016/j.jtbi.2006.05.030
  • K.K. Yin, H. Yang, P. Daoutidisc, and G.G. Yin, Simulation of population dynamics using continuous-time finite-state Markov chains, Comput. Chem. Eng. 27 (2003), pp. 235–249. doi:10.1016/S0098-1354(02)00179-5
  • Z. Kutanjek, Simulation of mammalian cell population dynamics, 26th International Conference on ITI, Cavtat, Croatia, 2004.
  • Y. Lim, Modeling and Prediction of Cell Population Dynamics, Comput. Aid. Chem. Eng. 20 (2005), pp. 517–522.doi:10.1016/S1570-7946(05)80208-1
  • P. Mhaskar, M.A. Hjorts, and M.A. Henson, Cell population modeling and parameter estimation for continuous cultures of saccharomyces cerevisiae, Biotechnol. Prog. 18 (2002), pp. 1010–1026. doi:10.1021/bp020083i
  • P. Auger, R.B. Parra, J.C. Poggiale, E. Sánchez, and L. Sanz, Aggregation methods in dynamical systems and applications in population and community dynamics, Phys. Life Rev. 5 (2008), pp. 79–105. doi:10.1016/j.plrev.2008.02.001
  • R. Serra, M. Villani, and A. Colacci, Differential equations and cellular automata models of the growth of cell cultures and transformation foci, Complex Syst. 13 (2001), pp. 347–380.
  • C.A. Chung, T.H. Lin, S.D. Chen, and H.I. Huang, Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs, J. Theor. Biol. 262 (2010), pp. 267–278. doi:10.1016/j.jtbi.2009.09.031
  • G. Cheng, P. Markenscoff, and K. Zygourakis, A 3D hybrid model for tissue growth: the interplay between cell population and mass transport dynamics, Biophys. J. 97 (2009), pp. 401–414. doi:10.1016/j.bpj.2009.03.067
  • B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, New York, 2002.
  • P.J. Roache, Fundamentals of Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1998.
  • J.C. Tannehill, D.A. Anderson, and R.H. Pletcher, Basics of discretization methods, in Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, Washington, DC, 1997, pp. 45–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.