Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 22, 2016 - Issue 2
274
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

On unifying concepts for trajectory-based slow invariant attracting manifold computation in kinetic multiscale models

&
Pages 87-112 | Received 17 Oct 2014, Accepted 08 Jan 2016, Published online: 02 Mar 2016

References

  • M. Bodenstein, Eine Theorie der photochemischen Reaktionsgeschwindigkeiten, Z. Physik. Chem. 85 (1913), pp. 329–397.
  • D.L. Chapman and L.K. Underhill, The interaction of chlorine and hydrogen. The influence of mass, J. Chem. Soc. 103 (1913), pp. 496–508. doi:10.1039/ct9130300496
  • L. Michaelis and M.L. Menten, Die Kinetik der Invertinwirkung, Biochem. Z. 49 (1913), pp. 333–369.
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264. doi:10.1016/0010-2180(92)90034-M
  • S.H. Lam, Recent Advances in the Aerospace Sciences, Plenum Press, New York and London, 1985, ch. Singular Perturbation for Stiff Equations using Numerical Methods, pp. 3–20.
  • S.H. Lam and D.A. Goussis, The CSP method for simplifying kinetics, Int, J. Chem. Kinet. 26 (1994), pp. 461–486. doi:10.1002/kin.550260408
  • I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci. 1 (2003), pp. 715–762. doi:10.4310/CMS.2003.v1.n4.a5
  • C. Theodoropoulos, Y.-H. Qian, and I.G. Kevrekidis, Coarse stability and bifurcation analysis using time-steppers: A reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (2000), pp. 9840–9843. doi:10.1073/pnas.97.18.9840
  • E. Chiavazzo and I. Karlin, Adaptive simplification of complex multiscale systems, Phys. Rev. E 83 (2011), pp. 036706. doi:10.1103/PhysRevE.83.036706
  • K.D. Mease, U. Topcu, E. Aykutlug, and M. Maggia, Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and vectors, arXiv:0807.0239v2 [math.DS], 2012.
  • E. Chiavazzo, A.N. Gorban, and I. Karlin, Comparison of invariant manifolds for model reduction in chemical kinetics, Commun. Comput. Phys. 2 (2007), pp. 964–992.
  • A.N. Gorban and I.V. Karlin, The invariance equation in differential form, in Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, A.N. Gorban and I.V. Karlin, eds., Springer, New York, 2005, pp. 65–69.
  • A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, No. 660 in Lecture Notes in Physics, Springer, Berlin, 2005.
  • M. Valorani and S. Paolucci, The g-scheme: A framework for multi-scale adaptive model reduction, J. Comp. Phys. 228 (2009), pp. 4665–4701. doi:10.1016/j.jcp.2009.03.011
  • Z. Ren and S.B. Pope, Species reconstruction using pre-image curves, Proc. Comb. Inst. 30 (2005), pp. 1293–1300. doi:10.1016/j.proci.2004.07.017
  • Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys. 124 (2006), pp. 114111. doi:10.1063/1.2177243
  • C.W. Gear, T.J. Kaper, I.G. Kevrekidis, and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst. 4 (2005), pp. 711–732. doi:10.1137/040608295
  • A. Zagaris, C.W. Gear, T.J. Kaper, and Y.G. Kevrekidis, Analysis of the accuracy and convergence of equation-free projection to a slow manifold, ESAIM: Math. Model. Num. 43 (2009), pp. 757–784. doi:10.1051/m2an/2009026
  • J.M. Ginoux, B. Rossetto, and L. Chua, Slow invariant manifolds as curvature of the flow of dynamical systems, Int. J. Bifurcat. Chaos 18 (2008), pp. 3409–3430. doi:10.1142/S0218127408022457
  • M.R. Roussell and T. Tang, The functional equation truncation method for approximating slow invariant manifolds: A rapid method for computing intrinsic low-dimensional manifolds, J. Chem. Phys. 125 (2006), pp. 214103. doi:10.1063/1.2402172
  • M.R. Roussell, Further studies of the functional equation truncation approximation, Can. Appl. Math. Q. 20 (2012), pp. 209–227.
  • A. Adrover, F. Creta, S. Cerbelli, M. Valorani, and M. Giona, The structure of slow invariant manifolds and their bifurcational routes in chemical kinetic models, Comput. Chem. Eng. 31 (2007), pp. 1456–1474. doi:10.1016/j.compchemeng.2006.12.008
  • A. Adrover, F. Creta, M. Giona, and M. Valorani, Stretching-based diagnostics and reduction of chemical kinetic models with diffusion, J. Comput. Phys. 225 (2007), pp. 1442–1471. doi:10.1016/j.jcp.2007.01.030
  • A.N. Al-Khateeb, J.M. Powers, S. Paolucci, A.J. Sommese, J.A. Diller, J.D. Hauenstein, and J.D. Mengers, One-dimensional slow invariant manifolds for spatially homogenous reactive systems, J. Chem. Phys. 131 (2009), pp. 024118. doi:10.1063/1.3171613
  • D. Lebiedz, Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics, J. Chem. Phys. 120 (2004), pp. 6890–6897. doi:10.1063/1.1652428
  • D. Lebiedz, V. Reinhardt, and J. Kammerer, Novel trajectory based concepts for model and complexity reduction in (bio)chemical kinetics, in Model Reduction and Coarse-Graining Approaches for Multi-Scale Phenomena, A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, and C. Theodoropoulos, eds., Springer, Berlin, 2006, pp. 343–364.
  • D. Lebiedz, V. Reinhardt, and J. Siehr, Minimal curvature trajectories: Riemannian geometry concepts for model reduction in chemical kinetics, J. Comp. Phys. 229 (2010), pp. 65126533. doi:10.1016/j.jcp.2010.05.008
  • D. Lebiedz, Entropy-related extremum principles for model reduction of dynamical systems, Entropy 12 (2010), pp. 706–719. doi:10.3390/e12040706
  • D. Lebiedz, V. Reinhardt, J. Siehr, and J. Unger, Geometric criteria for model reduction in chemical kinetics via optimization of trajectories, in Coping with Complexity: model Reduction and Data Analysis, A.N. Gorban and D. Roose, eds., Springer, Springer Series, Lecture Notes in Computational Science and Engineering, 2011, PP. 241–252.
  • D. Lebiedz, J. Siehr, and J. Unger, A variational principle for computing slow invariant manifolds in dissipative dynamical systems, SIAM J. Sci. Comput. 33 (2011), pp. 703–720. doi:10.1137/100790318
  • V. Reinhardt, M. Winckler, and D. Lebiedz, Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches, J. Phys. Chem. A 112 (2008), pp. 1712–1718. doi:10.1021/jp0739925
  • D. Lebiedz and J. Siehr, A continuation method for the efficient solution ofparametric optimization problems in kinetic model reduction, SIAM J. Sci. Comput. 35 (2013), pp. A1584–A1603. doi:10.1137/120900344
  • D. Lebiedz and J. Siehr, An optimization approach to kinetic model reduction for combustion chemistry, Flow Turbul. Combust 92 (2014), pp. 885–902. doi:10.1007/s10494-014-9532-x
  • M.J. Davis and R.T. Skodje, Geometric investigation of low-dimensional manifolds in systems approaching equilibrium, J. Chem. Phys. 111 (1999), pp. 859–874. doi:10.1063/1.479372
  • S. Singh, J.M. Powers, and S. Paolucci, On slow manifolds of chemically reactive systems, J. Chem. Phys. 117 (2002), pp. 1482–1496. doi:10.1063/1.1485959
  • B. Rossetto, Trajectoires lentes des systèmes dynamiques, in Proceedings of the 7th International Conference on Analysis and Optimization of Systems, Antibes, Juan-les-Pins, France, Springer, 1986, pp. 630–645.
  • C.K.R.T. Jones, Geometric singular perturbation theory, Lect. Notes Math. 1609 (1994), pp. 44–118.
  • T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, in Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proc. Symp. Appl. Math., R.E. O’Malley Jr. and J. Cronin, eds., Vol. 56, Am. Math. Soc., Providence, RI, 1999, pp. 85–132.
  • G. Darboux, Memoire sur les equations differentielles algebriques du premier ordre et du premier degre. Bull. Sci. Math. 2 (1878), pp. 60–96, pp. 123–143, pp. 151–200.
  • H.G. Kaper and T.J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions, Physica D: Nonlinear Phenomena 165 (2002), pp. 66–93. doi:10.1016/S0167-2789(02)00386-X
  • D.A. Goussis, Quasi steady state and partial equilibrium approximations: their relation and their validity, Combust, Theor. Model. 16 (2012), pp. 869–926. doi:10.1080/13647830.2012.680502
  • M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H.M. Osinga, and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev 54 (2012), pp. 211–288. doi:10.1137/100791233
  • J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Syst. 8 (2009), pp. 854–879. doi:10.1137/080741999
  • J.D. Mengers and J.M. Powers, One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion, SIAM J. Appl. Dyn. Syst. 12 (2013), pp. 560–595. doi:10.1137/120877118
  • M. Heitel, Comparison of numerical optimization techniques for a variational problem formulation of manifold-based model reduction, Master thesis, Ulm University, Ulm, Germany, 2015.
  • A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. 106 (2006), pp. 25–57. doi:10.1007/s10107-004-0559-y
  • Y. Cao, S. Li, L. Petzold, and R. Serban, Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution, SIAM J. Sci. Comput. 24 (2003), pp. 1076–1089. doi:10.1137/S1064827501380630
  • V. Reinhardt, On the application oftrajectory-based optimization for nonlinear kinetic model reduction, Ph.D. thesis, University of Heidelberg, Heidelberg, Germany 2008.
  • R.M. Santilli, Foundations of Theoretical Mechanics I: the Inverse Problem in Newtonian Mechanics, Springer, New York, 1978.
  • R.M. Santilli, Foundations of Theoretical Mechanics II: birkhoffian Generalization of Hamiltonian Mechanics, Springer, New York, 1983.
  • G. Moradni, C. Ferrario, G.L. Vecchio, G. Marmo, and C. Rubano, The inverse problem in the calculus of variations and the geometry of the tangent bundle, Phys. Rep 188 (1990), pp. 147–284. doi:10.1016/0370-1573(90)90137-Q
  • V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin, Theory of optimal processes. I. The maximum principle, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), pp. 3–42.
  • E. Noether, Invariante Variationsprobleme, Nachr. D. Konig. Gesellsch. D. Wiss. Zu Gottingen, Math-phys. Klasse, 1918, pp. 235–257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.