Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 22, 2016 - Issue 4: Model Order Reduction
1,270
Views
14
CrossRef citations to date
0
Altmetric
Articles

Interface and model reduction for efficient explicit simulations - a case study with nonlinear vehicle crash models

, &
Pages 380-396 | Received 06 Oct 2015, Accepted 02 Jun 2016, Published online: 20 Jun 2016

References

  • R. Isermann, Mechatronic Systems: Fundamentals, Springer, London, 2005.
  • P. Eberhard and W. Schiehlen, Computational dynamics of multibody systems: History, formalisms, and applications, Trans. ASME J. Comput. Nonlinear Dyn. 1 (2006), pp. 3–12.
  • P. Goupil and A. Marcos, Advanced diagnosis for sustainable flight guidance and control: The European ADDSAFE Project. Technical Paper 2011–01–2804, SAE International, 2011.
  • C. Tobias, J. Fehr, and P. Eberhard: Durability-based structural optimization with reduced elastic multibody systems. In Proceedings of the 2nd International Conference on Engineering Optimization, Paper-ID 1119, Lisbon, Portugal, September 6–9, 2010.
  • A. Tkachuk and M. Bischoff, Variational methods for selective mass scaling, Computational Mechanics 52 (3) (2013), pp. 563–570. doi:10.1007/s00466-013-0832-0
  • V. Faucher and A. Combescure, Local modal reduction in explicit dynamics with domain decomposition. Part 1: Extension to subdomains undergoing finite rigid rotations, Int. J. Numer. Methods Eng. 60(15) (2004), pp. 2531–2560.
  • T. Borrvall, D. Bhalsod, J.O. Hallquist, and B. Wainscott: Current status of subcycling and multiscale simulations in LS–DYNA. In 13th International LS-DYNA User Conference, Detroit, USA, 2014.
  • A. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.
  • P. Benner, V. Mehrmann, and D. Sorensen (Eds.), Dimension Reduction of Large-Scale Systems, Vol. 45 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 2005.
  • W. Schilders, H. Van Der Vorst, and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications, Vol. 13 of Mathematics in Industry, Springer, Berlin, 2008.
  • A. Quarteroni and G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, Vol. 9 of MS&A - Modeling, Simulation and Applications, Springer International Publishing, Switzerland, 2014.
  • J. Fehr and D. Grunert, Model reduction and clustering techniques for crash simulations, PAMM 15 (1) (2015), pp. 125–126. doi:10.1002/pamm.201510053
  • B. Bohn, J. Garcke, R. Iza-Teran, A. Paprotny, B. Peherstorfer, U. Schepsmeier, and C.-A. Thole, Analysis of car crash simulation data with nonlinear machine learning methods, Procedia Comput. Sci. 18 (2013), pp. 621–630. doi:10.1016/j.procs.2013.05.226
  • L. Mei and C. Thole, Data analysis for parallel car-crash simulation results and model optimization, Simul. Modell. Pract. Theory 16 (3) (2008), pp. 329–337. doi:10.1016/j.simpat.2007.11.018
  • B. Miled, D. Ryckelynck, and S. Cantournet, A priori hyper-reduction method for coupled viscoelastic viscoplastic composites, Comput. Struct. 119 (1) (2013), pp. 95–103. doi:10.1016/j.compstruc.2012.11.017
  • C. Farhat, P. Avery, T. Chapman, and J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng. 98 (9) (2014), pp. 625–662. doi:10.1002/nme.4668
  • P. Holzwarth and P. Eberhard, SVD-based improvements for component mode synthesis in elastic multibody systems, Eur. J. Mecha. A/Solids 49 (2015), pp. 408–418. doi:10.1016/j.euromechsol.2014.08.009
  • P. Holzwarth and P. Eberhard: Interface reduction for CMS methods and alternative model order reduction. In Proceedings of the MATHMOD 2015 – 8th Vienna International Conference on Mathematical Modelling, Vienna, Austria, 2015. 10.1016/j.ifacol.2015.05.005
  • P. Holzwarth, M. Baumann, T. Volzer, I. Iroz, P. Bestle, and J. Fehr, Software Morembs, University of Stuttgart, Institute of Engineering and Computational Mechanics, Stuttgart, Germany, 2015.
  • B.N. Maker and D.J. Benson: Modal methods for transient dynamic analysis in LS-dyna. In Proceedings of the Seventh International LS-Dyna Users Conference, Detroit, USA, 2002.
  • T. Belytschko, W.K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, 2000.
  • P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin, 2010.
  • R. Craig: Coupling of substructures for dynamic analyses: an overview. In Proceedings of the AIAA Dynamics Specialists Conference, Paper-ID 2000-1573, Atlanta, April 5, 2000.
  • J. Fehr, Automated and Error-Controlled Model Reduction in Elastic Multibody Systems. Dissertation, Schriften Aus Dem Institut Für Technische Und Numerische Mechanik Der Universität Stuttgart, Vol. 21, Shaker Verlag, Aachen, 2011.
  • P. Holzwarth and P. Eberhard: Interpolation and truncation model reduction techniques in coupled elastic multibody systems. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, 2015.
  • B. Salimbahrami and B. Lohmann, Second order krylov subspace for the reduction of second order systems, in Methods and Applications in Automation, 25th - 26th Colloquium of Automation, Salzhausen, Germany, No. 1.1 in Publication Series of the Institute of Automation, University of Bremen, A. Gräser and B. Lohmann, eds., Shaker Verlag, Aachen, 2005, pp. 1–11.
  • J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, Greedy-based approximation of frequency-weighted gramian matrices for model reduction in multibody dynamics, Zeitschrift für angewandte Mathematik und Mechanik 93 (8) (2012), pp. 501–519. doi:10.1002/zamm.201200014
  • T. Wolf, H. Panzer, and B. Lohmann, Model order reduction by approximate balanced truncation: a unifying framework, at-Automatisierungstechnik 61 (8) (2013), pp. 545–556. doi:10.1524/auto.2013.1007
  • M. Lehner and P. Eberhard, A two-step approach for model reduction in flexible multibody dynamics, Multibody Syst. Dyn. 17 (2–3) (2007), pp. 157–176. doi:10.1007/s11044-007-9039-5
  • M. Burkhardt, P. Holzwarth, and R. Seifried, Inversion-based trajectory tracking control for a parallel kinematic manipulator with flexible links, in Proceedings of the 11th International Conference on Vibration Problems, Z. Dimitrovová, J. De Almeida, and R. Gonçalves, eds., Lisbon, September 9–12, 2013.
  • J.L. Eftang and A.T. Patera, A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and a posteriori error estimation, Adv. Modell. Simul. Eng. Sci. 1 (1) (2014), pp. 3. doi:10.1186/2213-7467-1-3
  • S. Donders, B. Pluymers, P. Ragnarsson, R. Hadjit, and W. Desmet, The wave-based substructuring approach for the efficient description of interface dynamics in substructuring, J. Sound. Vib. 329 (8) (2010), pp. 1062–1080. doi:10.1016/j.jsv.2009.10.022
  • T. Shiiba, J. Fehr, and P. Eberhard, Flexible multibody simulation of automotive systems with non-modal model reduction techniques, Vehicle Syst. Dyn. 50 (12) (2012), pp. 1905–1922. doi:10.1080/00423114.2012.700403
  • Total Materia Werkstoffdatenbank. www.totalmateria.com, accessed June 21, 2015.
  • Euro NCAP: European New Car Assessment Programme (Euro NCAP): assessment protocol – adult occupant protection, Version 7.0.2. Tech. rep., Euro NCAP, 2 Place du Luxembourg, 1050 Brussels, Belgium, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.