745
Views
0
CrossRef citations to date
0
Altmetric
Articles

Determination of individual knee-extensor properties from leg extensions and parameter identification

ORCID Icon &
Pages 416-438 | Received 16 Feb 2016, Accepted 27 May 2017, Published online: 12 Jun 2017

References

  • J.L. Hicks, T.K. Uchida, A. Seth, A. Rajagopal, and S. Delp, Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of human movement, J. Biomech. Eng 137 (2015), p. 020905. doi:10.1115/1.4029304
  • A.J. Van Den Bogert, T. Geijtenbeek, O. Even-Zohar, F. Steenbrink, and E.C. Hardin, A real-time system for biomechanical analysis of human movement and muscle function, Med. Biol. Eng. Comput 51 (2013), pp. 1069–1077. doi:10.1007/s11517-013-1076-z
  • D.F.B. Haeufle, M. Günther, A. Bayer, and S. Schmitt, Hill-type muscle model with serial damping and eccentric force-velocity relation, J. Biomech 47 (2014), pp. 1531–1536. doi:10.1016/j.jbiomech.2014.02.009
  • M.G. Hoy, F.E. Zajac, and M.E. Gordon, A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle, J. Biomech 23 (1990), pp. 157–169. doi:10.1016/0021-9290(90)90349-8
  • M.G. Pandy, F.E. Zajac, E. Sim, and W.S. Levine, An optimal control model for maximum-height human jumping, J Biomech 23 (1990), pp. 1185–1198. doi:10.1016/0021-9290(90)90376-E
  • T. Siebert, M. Sust, S. Thaller, M. Tilp, and H. Wagner, An improved method to determine neuromuscular properties using force laws – From single muscle to applications in human movements, Hum. Mov. Sci 26 (2007), pp. 320–341. doi:10.1016/j.humov.2007.01.006
  • D.G. Thelen, Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults, J. Biomech. Eng 125 (2003), p. 70. doi:10.1115/1.1531112
  • A.J. Van Soest and M.F. Bobbert, The contribution of muscle properties in the control of explosive movements, Biol. Cybern 69 (1993), pp. 195–204. doi:10.1007/BF00198959
  • F.E. Zajac, Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng. 17 (1989), pp. 359–411.
  • V.M. Zatsiorsky and W.J. Kraemer, Science and Practice of Strength Training, 2nd ed., Human Kinetics, Champaign, IL, 2006.
  • E. Müller and H. Schwameder, Biomechanical aspects of new techniques in alpine skiing and ski-jumping, J. Sports. Sci 21 (2003), pp. 679–692. doi:10.1080/0264041031000140284
  • A. Erdemir, S. McLean, W. Herzog, and A.J. Van Den Bogert, Model-based estimation of muscle forces exerted during movements, Clin Biomech (Bristol, Avon) 22 (2007), pp. 131–154. doi:10.1016/j.clinbiomech.2006.09.005
  • T. Siebert, C. Rode, W. Herzog, O. Till, and R. Blickhan, Nonlinearities make a difference: Comparison of two common Hill-type models with real muscle, Biol. Cybern 98 (2008), pp. 133–143. doi:10.1007/s00422-007-0197-6
  • S. Fukashiro, D.C. Hay, and A. Nagano, Biomechanical behavior of muscle-tendon complex during dynamic human movements, J. Appl. Biomech 22 (2006), pp. 131–147. doi:10.1123/jab.22.2.131
  • D. Hahn, W. Herzog, and A. Schwirtz, Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension, Eur. J. Appl. Physiol. 114 (2014), pp. 1691–1702.
  • H. Wagner, T. Siebert, D.J. Ellerby, R.L. Marsh, and R. Blickhan, ISOFIT: A model-based method to measure muscle-tendon properties simultaneously, Biomech. Model. Mechanobiol 4 (2005), pp. 10–19. doi:10.1007/s10237-005-0068-9
  • L. Chèze, F. Moissenet, and R. Dumas, State of the art and current limits of musculoskeletal models for clinical applications, Move. Sport Sci. Sci. Motricité 90 (2015), pp. 7–17. doi:10.1051/sm/2012026
  • S.R. Ward, C.M. Eng, L.H. Smallwood, and R.L. Lieber, Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467 (2009), pp. 1074–1082. doi:10.1007/s11999-008-0594-8
  • C.R. Winby, D.G. Lloyd, and T.B. Kirk, Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters, J Biomech 41 (2008), pp. 1682–1688. doi:10.1016/j.jbiomech.2008.03.008
  • H. De Brito Fontana, H. Roesler, and W. Herzog, In vivo vastus lateralis force-velocity relationship at the fascicle and muscle tendon unit level, J. Electromyogr. Kinesiol. 24 (2014), pp. 934–940. doi:10.1016/j.jelekin.2014.06.010
  • S. Thaller, M. Tilp, and M. Sust, The effect of individual neuromuscular properties on performance in sports, Math. Comput. Model. Dyn. Syst 16 (2010), pp. 417–429. doi:10.1080/13873954.2010.507082
  • S.J. Piazza, Muscle-driven forward dynamic simulations for the study of normal and pathological gait, J. Neuroeng. Rehabil 3 (2006), p. 5. doi:10.1186/1743-0003-3-5
  • M. Sust, T. Schmalz, and S. Linnenbecker, Relationship between distribution of muscle fibres and invariables of motion, Hum. Mov Sci 16 (1997), pp. 533–546. doi:10.1016/S0167-9457(96)00063-2
  • H. Wagner, S. Thaller, R. Dahse, and M. Sust, Biomechanical muscle properties and angiotensin-converting enzyme gene polymorphism: A model-based study, Eur. J. Appl. Physiol. 98 (2006), pp. 507–515.
  • H. Hatze, The inverse dynamics problem of neuromuscular control, Biol. Cybern 82 (2000), pp. 133–141. doi:10.1007/s004220050013
  • A. Jinha, R. Ait-Haddou, and W. Herzog, Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model, J Biomech 39 (2006), pp. 1145–1152. doi:10.1016/j.jbiomech.2005.03.001
  • S. Thaller and H. Wagner, The relation between Hill’s equation and individual muscle properties, J. Theor. Biol. 231 (2004), pp. 319–332. doi:10.1016/j.jtbi.2004.06.027
  • N.A. Maffiuletti, J. Duchateau, and P. Aagaard, Rate of force development: Methodological issues, in Proceedings of the 19TH annual Congress of the European College of Sport Science Vol. 22, European College of Sport Science, Amsterdam, 2014, p. 290.
  • R. Ballreich and W. Baumann, Grundlagen der Biomechanik des Sport, 2nd ed., Enke, Stuttgart, 1996.
  • H. Penasso, Activating muscles from pre-activation to MVC, in Proceedings of the 19TH annual Congress of the European College of Sport Science Vol. 22, European College of Sport Science, Amsterdam, 2014, p. 241.
  • M. Sust, Beitrag zum Aufbau einer axiomatischen Theorie der Biomechanik und Beispiele ihrer Anwendung, Dissertation, Friedrich-Schiller-Universität Jena, 1987.
  • A.V. Hill, The heat of shortening and the dynamic constants of muscle, Proc. Royal Soc. B: Biol. Sci. 126 (1938), pp. 136–195. doi:10.1098/rspb.1938.0050
  • J. D’Errico, Adaptive robust numerical differentiation (2011); software available at http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation.
  • H.P. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems (2013). [17 March 2014]. Available at http://people.duke.edu/hpgavin/ce281/lm.pdf.
  • K. Yuen, Bayesian Methods for Structural Dynamics and Civil Engineering, Wiley, John Wiley & Sons (Asia) Pte Ltd., Singapore, 2010.
  • H. Hentschke and M.C. Stüttgen, Computation of measures of effect size for neuroscience data sets, Eur. J. Neurosci. 34 (2011), pp. 1887–1894. doi:10.1111/j.1460-9568.2011.07902.x
  • S.G. Hofmann, A.T. Sawyer, A.A. Witt, and D. Oh, The effect of mindfulness-based therapy on anxiety and depression: A meta-analytic review, J. Consult. Clin. Psychol 78 (2010), pp. 169–183. doi:10.1037/a0018555
  • C.C. Carroll, J.M. Dickinson, J.M. Haus, G.A. Lee, C.J. Hollon, P. Aagaard, S.P. Magnusson, and T.A. Trappe, Influence of aging on the in vivo properties of human patellar tendon, J. Appl. Physiol 105 (2008), pp. 1907–1915. doi:10.1152/japplphysiol.00059.2008
  • P. Hansen, J. Bojsen-Moller, P. Aagaard, M. Kjaer, and S.P. Magnusson, Mechanical properties of the human patellar tendon, in vivo, Clin Biomech (Bristol, Avon) 21 (2006), pp. 54–58. doi:10.1016/j.clinbiomech.2005.07.008
  • M. Kongsgaard, S. Reitelseder, T.G. Pedersen, L. Holm, P. Aagaard, M. Kjaer, and S.P. Magnusson, Region specific patellar tendon hypertrophy in humans following resistance training, Acta physiologica (Oxford, England). 191 (2007), pp. 111–121. doi:10.1111/aps.2007.191.issue-2
  • K. Kubo, H. Yata, H. Kanehisa, and T. Fukunaga, Effects of isometric squat training on the tendon stiffness and jump performance, Eur. J. Appl. Physiol. 96 (2006), pp. 305–314. doi:10.1007/s00421-005-0087-3
  • T.D. O’Brien, N.D. Reeves, V. Baltzopoulos, D.A. Jones, and C. Maganaris, Mechanical properties of the patellar tendon in adults and children., J Biomech 43 (2010), pp. 1190–1195. doi:10.1016/j.jbiomech.2009.11.028
  • S.J. Pearson, K. Burgess, and G.N. Onambele, Creep and the in vivo assessment of human patellar tendon mechanical properties, Clin. Biomech. 22 (2007), pp. 712–717. doi:10.1016/j.clinbiomech.2007.02.006
  • E. Westh, M. Kongsgaard, J. Bojsen-Moller, P. Aagaard, M. Hansen, M. Kjaer, and S.P. Magnusson, Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women, Scand. J. Med. Sci. Sports 18 (2007), pp. 23–30. doi:10.1111/j.1600-0838.2007.00638.x
  • A.L. Hof, In vivo measurement of the series elasticity release curve of human triceps surae muscle, J. Biomech 31 (1998), pp. 793–800. doi:10.1016/S0021-9290(98)00062-1
  • M. Günther, S. Schmitt, and V. Wank, High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models, Biol. Cybern 97 (2007), pp. 63–79. doi:10.1007/s00422-007-0160-6
  • W. Herzog, History dependence of skeletal muscle force production: Implications for movement control, Hum. Mov. Sci 23 (2004), pp. 591–604. doi:10.1016/j.humov.2004.10.003
  • C.N. Maganaris and J.P. Paul, Hysteresis measurements in intact human tendon, J. Biomech. 33 (2000), pp. 1723–1727. doi:10.1016/S0021-9290(00)00130-5
  • R.M. Enoka and J. Duchateau, Translating fatigue to human performance, Med. Sci. Sports Exerc. 48 (2016), pp. 2228-2238.
  • P.R. Cavanagh and P.V. Komi, Electromechanical delay in human skeletal muscle under concentric and eccentric contractions, Eur. J. Appl. Physiol. Occup. Physiol 42 (1979), pp. 159–163. doi:10.1007/BF00431022
  • T. Van Eijden, E. Kouwenhoven, J. Verburg, and W. Weijs, A mathematical model of the patellofemoral joint, J Biomech 19 (1986), pp. 219–229. doi:10.1016/0021-9290(86)90154-5
  • H. Im, O. Goltzer, and F. Sheehan, The effective quadriceps and patellar tendon moment arms relative to the tibiofemoral finite helical axis, J. Biomech 48 (2015), pp. 3737–3742. doi:10.1016/j.jbiomech.2015.04.003
  • M. Günther, O. Röhrle, D.F.B. Haeufle, and S. Schmitt, Spreading Out Muscle Mass within a Hill-Type Model: A Computer Simulation Study, Comput. Math. Methods Med. 2012 (2012), p. 848630.
  • W. Herzog and T.R. Leonard, Validation of optimization models that estimate the forces exerted by synergistic muscles, J. Biomech. 1 (1991), pp. 31–39. doi:10.1016/0021-9290(91)90375-W
  • E. Kickmeier, Weiterentwicklung eines biomechanischen Modells der Ellbogenstreckung: Bestimmung der anthropometrischen Eingangsparameter unter Berücksichtigung der Schulterverschiebung, Dissertation, Karl-Franzens-Univerität Graz, 2015.
  • A. Arampatzis, S. Stafilidis, G. DeMonte, K. Karamanidis, G. Morey-Klapsing, and G.P. Brüggemann, Strain and elongation of the human gastrocnemius tendon and aponeurosis during maximal plantarflexion effort, J Biomech 38 (2005), pp. 833–841. doi:10.1016/j.jbiomech.2004.04.031
  • M. Tilp, S. Steib, and W. Herzog, Length changes of human tibialis anterior central aponeurosis during passive movements and isometric, concentric, and eccentric contractions, Eur. J. Appl. Physiol. 112 (2012), pp. 1485–1494. doi:10.1007/s00421-011-2111-0
  • K. Kubo, Y. Kawakami, and T. Fukunaga, Influence of elastic properties of tendon structures on jump performance in humans, J. Appl. Physiol. 87 (1999), pp. 2090–2096.
  • F.E. Nelson, J.D. Ortega, S.A. Jubrias, K.E. Conley, and M.J. Kushmerick, High efficiency in human muscle: An anomaly and an opportunity? J. Exp. Biol. 214 (2011), pp. 2649–2653. doi:10.1242/jeb.052985
  • P.R. Bevington and D.K. Robinson, Data Reduction and Error Analysis for Physical Sciences, 3rd ed., McGraw-Hill, Boston, MA, 2003.