Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 24, 2018 - Issue 3
530
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Empirical Gramian-based spatial basis functions for model reduction of nonlinear distributed parameter systems

ORCID Icon, , &
Pages 258-274 | Received 29 Jul 2017, Accepted 26 Feb 2018, Published online: 05 Mar 2018

References

  • S. Munusamy, S. Narasimhan, and N.S. Kaisare, Order reduction and control of hyperbolic, countercurrent distributed parameter systems using method of characteristics, Chem. Eng. Sci. 110 (2014), pp. 153–163. doi:10.1016/j.ces.2013.12.029
  • D.B. Pourkargar and A. Armaou, Geometric output tracking of nonlinear distributed parameter systems via adaptive model reduction, Chem. Eng. Sci. 116 (2014), pp. 418–427. doi:10.1016/j.ces.2014.05.030
  • D.B. Pourkargar and A. Armaou, Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients, AIChE J. 59 (12) (2013), pp. 4595–4611. doi:10.1002/aic.14207
  • J.A. Rad, S. Kazem, and K. Parand, Optimal control of a parabolic distributed parameter system via radial basis functions, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), pp. 2559–2567. doi:10.1016/j.cnsns.2013.01.007
  • Y.Q. Ren, X.G. Duan, H.X. Li, and C.L. Philip Chen, Dynamic switching based fuzzy control strategy for a class of distributed parameter system, J. Process Control. 24 (2014), pp. 88–97.
  • Y.Q. Ren, X.G. Duan, H.X. Li, and C.L. Philip Chen, Multi-variable fuzzy logic control for a class of distributed parameter systems, J. Process Control 23 (3) (2013), pp. 351–358. doi:10.1016/j.jprocont.2012.12.004
  • S. Zheng, Z.X. Luo, Y.X. Deng, and H.C. Zhou, Development of a distributed-parameter model for the evaporation system in a supercritical W-shaped boiler, Appl. Thermal Eng. 62 (1) (2014), pp. 123–132. doi:10.1016/j.applthermaleng.2013.09.029
  • C.K. Qi, H.X. Li, S.Y. Li, X.C. Zhao, and F. Gao, A fuzzy-based spatio-temporal multi-modeling for nonlinear distributed parameter processes, Appl. Soft. Comput. 25 (2014), pp. 309–321. doi:10.1016/j.asoc.2014.09.003
  • C.K. Qi, H.X. Li, X.X. Zhang, X.C. Zhao, S.Y. Li, and F. Gao, Time/space separation based SVM modeling for nonlinear distributed parameter processes, Ind. Eng. Chem. Res. 50 (1) (2011), pp. 332–341. doi:10.1021/ie1002075
  • M. Izadi and S. Dubljevic, Order-reduction of parabolic PDEs with time-varying domain using empirical eigenfunctions, AIChE J. 59 (11) (2013), pp. 4142–4150. doi:10.1002/aic.v59.11
  • X.J. Lu, F. Yin, C. Liu, and M.H. Huang, Online spatiotemporal extreme learning machine for complex time-varying distributed parameter systems, IEEE Trans. Ind. Inform. 13 (4) (2017), pp. 1753–1762. doi:10.1109/TII.2017.2666841
  • X.J. Lu, F. Yin, and M.H. Huang, Online spatiotemporal least-squares support vector machine modeling approach for time-varying distributed parameter processes, Ind. Eng. Chem. Res. 56 (25) (2017), pp. 7314–7321. doi:10.1021/acs.iecr.7b00984
  • X.J. Lu, W. Zou, and M.H. Huang, A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process, IEEE Trans. Ind. Inform. 12 (3) (2016), pp. 1156–1165. doi:10.1109/TII.2016.2557805
  • P.D. Christofides (Ed), Special issue on ‘control of complex process systems’, Int. J. Robust Nonlinear Control. 14(2) (2004), pp. 87–88. doi:10.1002/(ISSN)1099-1239.
  • P.D. Christofides and A. Armaou (eds.), Control of multi-scale and distributed process systems-preface, Comput. Chem. Eng. 29(4) (2005), pp. 687–688. doi:10.1016/j.compchemeng.2004.09.003.
  • P.D. Christofides and X.Z. Wang (eds.), Special issue on ‘control of particulate processes’, Chem. Eng. Sci. 63(5) (2008), pp. 1155. doi:10.1016/j.ces.2007.07.025.
  • F. Kwasniok, The reduction of complex dynamical systems using principal interaction patterns, Physica D 92 (1996), pp. 28–60. doi:10.1016/0167-2789(95)00280-4
  • I.S. Sadek and M.A. Bokhari, Optimal control of a parabolic distributed parameter system via orthogonal polynomials, Optimal Control Appl. Methods 19 (3) (1998), pp. 205–213. doi:10.1002/(SICI)1099-1514(199805/06)19:3<205::AID-OCA613>3.0.CO;2-W
  • P.D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhauser, Boston, 2001.
  • H. Deng, H.X. Li, and G.-R. Chen, Spectral-approximation-based intelligent modeling for distributed thermal processes, IEEE Trans. Control Syst. Technol. 13 (5) (2005), pp. 686–700. doi:10.1109/TCST.2005.847329
  • H.M. Park and D.H. Cho, The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems, Chem. Eng. Sci. 51 (1996), pp. 81–98. doi:10.1016/0009-2509(95)00230-8
  • H.M. Park and D.H. Cho, Low dimensional modeling of flow reactors, Int. J. Heat Mass Transf. 39 (16) (1996), pp. 3311–3323. doi:10.1016/0017-9310(96)00038-5
  • A. Armaou and P.D. Christofides, Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains, Nonlinear Anal. 47 (4) (2001), pp. 2869–2874. doi:10.1016/S0362-546X(01)00407-2
  • B. Luo, H.N. Wu, and H.X. Li, Data-based suboptimal neuro-control design with reinforcement learning for dissipative spatially distributed processes, Ind. Eng. Chem. Res. 53 (19) (2014), pp. 8106–8119. doi:10.1021/ie4031743
  • M. Li and P.D. Christofides, Optimal control of diffusion-convection-reaction processes using reduced-order models, Comput. Chem. Eng. 32 (9) (2008), pp. 2123–2135. doi:10.1016/j.compchemeng.2007.10.018
  • L.G. Bleris and M.V. Kothare, Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions, Comput. Chem. Eng. 29 (4) (2005), pp. 817–827. doi:10.1016/j.compchemeng.2004.09.021
  • F. Kwasniok, Optimal Galerkin approximation of partial differential equations using principal interaction patterns, Phys. Rev. E 55 (1997), pp. 5365–5375. doi:10.1103/PhysRevE.55.5365
  • N. Aubry, W.Y. Lian, and E.S. Titi, Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comput. 14 (1993), pp. 483–505. doi:10.1137/0914030
  • D. Armbruster, R. Heiland, E.J. Kostelich, and B. Nicolaenko, Phase-space analysis of bursting behavior in Kolmogorov flow, Physica D 58 (1992), pp. 392–401. doi:10.1016/0167-2789(92)90125-7
  • A. Chatterjee, An introduction to the proper orthogonal decomposition, Curr. Sci. 78 (7) (2000), pp. 808–817.
  • M. Jiang and H. Deng, Optimal combination of spatial basis functions for the model reduction of nonlinear distributed parameter systems, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 5240–5248. doi:10.1016/j.cnsns.2012.05.006
  • H. Deng, M. Jiang, and C.Q. Huang, New spatial basis functions for the model reduction of nonlinear distributed parameter systems, J. Process Control 22 (2) (2012), pp. 404–411. doi:10.1016/j.jprocont.2011.12.008
  • M. Jiang, X.J. Li, J.G. Wu, and G.B. Wang, A precision on-line model for the prediction of thermal crown in hot rolling processes, Int. J. Heat Mass Transf. 78 (2014), pp. 967–973. doi:10.1016/j.ijheatmasstransfer.2014.07.061
  • A. Lall, J.E. Marsden, and S. Glavaski, A subspace approach to balanced truncation for model reduction of nonlinear control system, Int. J. Robust Nonlinear Control 12 (2002), pp. 519–535. doi:10.1002/rnc.657
  • J. Hahn and T.F. Edgar, An improved method for nonlinear model reduction using balancing of empirical gramians, Comput. Chem. Eng. 26 (10) (2002), pp. 1379–1397. doi:10.1016/S0098-1354(02)00120-5
  • B. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Automatic Control 26 (1) (1981), pp. 17–32. doi:10.1109/TAC.1981.1102568
  • J.M.A. Scherpen, Balancing for nonlinear systems, Syst. Control Lett. 21 (2) (1993), pp. 143–153. doi:10.1016/0167-6911(93)90117-O
  • M.S. Tombs and I. Postlethwaite, Truncated balanced realization of stable, non-minimal state-space systems, Int. J. Control. 46 (1989), pp. 1319–1330.
  • G.H. Golub and V.L. Cf (eds.), Matrix Computations, Johns Hopkins University Press, Washington, D.C., 1996.
  • W.H. Ray, Advanced Process Control, Butterworths, NewYork, 1981.
  • B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: M2AN 42 (2) (2008), pp. 277–302. doi:10.1051/m2an:2008001
  • C.L. Sun and J. Hahn, Nonlinear Model Reduction Routines for MATLAB, Available at http://homepages.rpi.edu/~hahnj/Model_Reduction/index.html.
  • H. Deng, Z. Xu, and H.X. Li, A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes, J. Process Control 19 (8) (2009), pp. 1392–1400. doi:10.1016/j.jprocont.2009.04.011
  • Z.B. Li, Traveling Wave Solution of Nonlinear Mathematical Physics Equations, SCIENCEP, Beijing, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.