Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 24, 2018 - Issue 6
2,497
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and identification of nonlinear cascade systems with backlash input and static output nonlinearities

Pages 593-609 | Received 02 Nov 2017, Accepted 05 Sep 2018, Published online: 19 Sep 2018

References

  • X. Wang and F. Ding, Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique, Math Comput. Model Dyn. Syst. 22 (2) (2016), pp. 113–140. doi:10.1080/13873954.2016.1142455.
  • J. Ma, W. Xiong, F. Ding, A. Alsaedi, and T. Hayat, Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities, J. Franklin Inst. 353 (16) (2016), pp. 4280–4299. doi:10.1016/j.jfranklin.2016.07.025.
  • X. Wang, F. Ding, T. Hayat, and A. Alsaedi, Combined state and multi-innovation parameter estimation for an input non-linear state-space system using the key term separation, IET Control Theory Appl. 10 (13) (2016), pp. 1503–1512. doi:10.1049/iet-cta.2015.1056.
  • J. Li, F. Ding, and L. Hua, Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems, Nonlinear Dyn. 75 (1–2) (2014), pp. 235–245. doi:10.1007/s11071-013-1061-y.
  • J. Ma and F. Ding, Filtering-based multistage recursive identification algorithm for an input nonlinear output-error autoregressive system by using the key term separation technique, Circ. Syst. Signal Processing 36 (2) (2017), pp. 577–599. doi:10.1007/s00034-016-0333-4.
  • D. Wang, F. Ding, and Y. Chu, Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle, Inf. Sci. (Ny) 222 (2013), pp. 203–212. doi:10.1016/j.ins.2012.07.064.
  • F. Ding, F. Wang, L. Xu, and M. Wu, Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering, J. Franklin Inst. 354 (3) (2017), pp. 1321–1339. doi:10.1016/j.jfranklin.2016.11.030.
  • Q. Shen and F. Ding, Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle, J. Franklin Inst. 352 (7) (2015), pp. 2847–2865. doi:10.1016/j.jfranklin.2015.05.005.
  • J. Vörös, Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities, IEEE Trans. Automatic Control 44 (11) (1999), pp. 2145–2149. doi:10.1109/9.802933.
  • P.S. Pal, R. Kar, D. Mandal, and S.P. Ghoshal, Identification of NARMAX Hammerstein models with performance assessment using brain storm optimization algorithm, Int. J. Adaptive Control Signal Processing 30 (7) (2016), pp. 1043–1070. doi:10.1002/acs.2674.
  • X. Xu, F. Wang, G. Liu, and F. Qian, Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm, IET Signal Processing 7 (8) (2013), pp. 766–773. doi:10.1049/iet-spr.2013.0042.
  • J. Chen, X. Lu, and R. Ding, Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities, J. Vibrat. Control 20 (4) (2014), pp. 634–640. doi:10.1177/1077546312466563.
  • R. Liu, T. Pan, S. Chen, and Z. Li, Identification of non-uniformly sampled Wiener systems with dead-zone non-linearities, Math. Comput. Model Dyn. Syst. 23 (6) (2017), pp. 595–612. doi:10.1080/13873954.2016.1278392.
  • K. Kazlauskas and R. Pupeikis, On intelligent extraction of an internal signal in a wiener system consisting of a linear block followed by hard-nonlinearity, Informatica 24 (2013), pp. 35–58.
  • J. Vörös, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Syst. Control Lett. 56 (2) (2007), pp. 99–105. doi:10.1016/j.sysconle.2006.08.001.
  • M. Pawlak, Z. Hasiewicz, and P. Wachel, On nonparametric identification of Wiener systems, IEEE Trans. Signal Processing 55 (2007), pp. 482–492. doi:10.1109/TSP.2006.885684.
  • P. Wachel and G. Mzyk, Direct identification of the linear block in Wiener system, Int. J. Adaptive Control Signal Processing 30 (1) (2016), pp. 93–105. doi:10.1002/acs.2584.
  • M. Milanese, C. Novara, and L. Pivano, Structured SM identification of vehicle vertical dynamics, Math. Comp. Model Dyn. Syst. 11 (2) (2005), pp. 195–207. doi:10.1080/13873950500068849.
  • D. Aryani, L. Wang, and T. Patikirikorala, On identification of Hammerstein and Wiener model with application to virtualised software system, Int. J. Syst. Sci. 48 (6) (2017), pp. 1146–1161. doi:10.1080/00207721.2016.1244303.
  • A. Janczak, Instrumental variables approach to identification of a class of MIMO Wiener systems, Nonlinear Dyn. 48 (2007), pp. 275–284. doi:10.1007/s11071-006-9088-y.
  • J. Kou, W. Zhang, and M. Yin, Novel Wiener models with a time-delayed nonlinear block and their identification, Nonlinear Dyn. 85 (4) (2016), pp. 2389–2404. doi:10.1007/s11071-016-2833-y.
  • A. Radouane, F. Giri, F. Ikhouane, T. Ahmed-Ali, F.-Z. Chaoui, and A. Brouri, System identification of a class of Wiener systems with hysteretic nonlinearities, Int. J. Adaptive Control Signal Processing 31 (3) (2017), pp. 332–359. doi:10.1002/acs.2700.
  • E.W. Bai, A blind approach to the Hammerstein-Wiener model identification, Automatica 38 (2002), pp. 967–979. doi:10.1016/S0005-1098(01)00292-8.
  • B. Ni, M. Gilson, and H. Garnier, Refined instrumental variable method for Hammerstein–Wiener continuous-time model identification, IET Control Theory Appl. 7 (9) (2013), pp. 1276–1286. doi:10.1049/iet-cta.2012.0548.
  • J. Vörös, An iterative method for Hammerstein-Wiener systems parameter identification, J. Electrical Eng. 55 (2004), pp. 328–331.
  • Y. Wang and F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering, Nonlinear Dyn. 84 (2) (2016), pp. 1045–1053. doi:10.1007/s11071-015-2548-5.
  • A. Wills and B. Ninness, Generalised Hammerstein–Wiener system estimation and a benchmark application, Control Eng. Pract. 20 (11) (2012), pp. 1097–1108. doi:10.1016/j.conengprac.2012.03.011.
  • F. Yu, Z. Mao, M. Jia, and P. Yuan, Recursive parameter identification of Hammerstein–Wiener systems with measurement noise, Signal Processing 105 (2014), pp. 137–147. doi:10.1016/j.sigpro.2014.05.030.
  • B. Zhang, H. Hong, and Z. Mao, Adaptive control of Hammerstein–Wiener nonlinear systems, Int. J. Syst. Sci. 47 (9) (2016), pp. 2032–2047. doi:10.1080/00207721.2014.971089.
  • V. Kalaš, L. Jurišica, M. Žalman, S. Almássy, P. Siviček, A. Varga, and D. Kalaš. Nonlinear and Numerical Servosystems, Alfa/SNTL, Bratislava, Slovakia, 1985. (in Slovak).
  • V. Cerone and D. Regruto, Bounding the parameters of linear systems with input backlash, IEEE Trans. Automatic Control 52 (3) (2007), pp. 531–536. doi:10.1109/TAC.2007.892375.
  • R.L. Dong and Y.H. Tan, On-line identification algorithm and convergence analysis for sandwich systems with backlash, Int. J. Control Automat. Syst. 9 (3) (2011), pp. 588–594. doi:10.1007/s12555-011-0320-2.
  • F. Giri, Y. Rochdi, F.Z. Chaoui, and A. Brouri, Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities, Automatica 44 (3) (2008), pp. 767–775. doi:10.1016/j.automatica.2007.07.005.
  • X. Huang and J. Wang. Identification of ground vehicle steering system backlash. J. Dyn. Syst. Measur. Control Transact ASME. 135(1) (2013) art. no. 011014, pp. 1–8.
  • G. Lai, Z. Liu, Y. Zhang, and C.L.P. Chen, Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse, IEEE Trans. Cybernetics 46 (6) (2016), pp. 1250–1262. doi:10.1109/TCYB.2015.2443877.
  • Z. Shi, Y. Wang, and Z. Ji, A multi-innovation recursive least squares algorithm with a forgetting factor for Hammerstein CAR systems with backlash, Circ. Syst. Signal Processing 35 (12) (2016), pp. 4271–4289. doi:10.1007/s00034-016-0271-1.
  • J. Vörös, Modeling and identification of systems with backlash, Automatica 46 (2) (2010), pp. 369–374. doi:10.1016/j.automatica.2009.11.005.
  • J. Vörös, Identification of nonlinear cascade systems with time-varying backlash, J. Electrical Eng. 62 (2) (2011), pp. 87–92. doi:10.2478/v10187-011-0014-2.
  • Z. Zhou, Y. Tan, Y. Xie, and R. Dong, State estimation of a compound non-smooth sandwich system with backlash and dead zone, Mech. Syst. Signal Process 83 (2017), pp. 439–449. doi:10.1016/j.ymssp.2016.06.023.
  • J. Vörös, Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models, Nonlinear Dyn. 79 (3) (2015), pp. 2187–2195. doi:10.1007/s11071-014-1804-4.
  • F. Giri, A. Radouane, A. Brouri, and F.-Z. Chaoui, Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators, Automatica 50 (2014), pp. 768–783. doi:10.1016/j.automatica.2013.12.030.
  • J. Reyland and E.W. Bai, Generalized Wiener system identification: General backlash nonlinearity and finite impulse response linear part, Int J Adaptive Control Signal Processing 28 (2014), pp. 1174–1188. doi:10.1002/acs.2437.
  • J. Vörös, Parametric identification of systems with general backlash, Informatica 23 (2012), pp. 283–298.
  • J. Vörös, Modeling and identification of nonlinear cascade and sandwich systems with general backlash, J. Electrical Eng. 65 (2) (2014), pp. 104–110. doi:10.2478/jee-2014-0015.
  • L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Massachusetts, 1983.
  • M. Chidambaram, Computer Control of Processes, CRC Press, New York, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.