Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 28, 2022 - Issue 1
1,607
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Can we replicate real human behaviour using artificial neural networks?

ORCID Icon &
Pages 95-109 | Received 08 Jun 2021, Accepted 04 Feb 2022, Published online: 27 Feb 2022

References

  • S. Abar, G.K. Theodoropoulos, P. Lemarinier, and G.M. O’Hare, Agent based modelling and simulation tools: A review of the state-of-artsoftware, Comput. Sci. Rev. 24 (2017), pp. 13–33. doi:10.1016/j.cosrev.2017.03.001.
  • H.R. Parry, and M. Bithell, Large scale agent-based modelling: A review and guidelines for model scaling, in Agent-based Models of Geographical Systems, Heppenstall, Alison J., CrooksLinda, Andrew T., and SeeMichael Batty, M., eds., Springer, Heidelberg, 2012, pp. 271–308.
  • L. An, Modeling human decisions in coupled human and natural systems: Review of agent-based models, Ecol Modell 229 (2012), pp. 25–36. doi:10.1016/j.ecolmodel.2011.07.010.
  • M. Barbati, G. Bruno, and A. Genovese, Applications of agent-based models for optimization problems: A literature review, Expert. Syst. Appl. 39 (2012), pp. 6020–6028. doi:10.1016/j.eswa.2011.12.015.
  • P. Hansen, X. Liu, and G.M. Morrison, Agent-based modelling and socio-technical energy transitions: A systematic literature review, Energy Res. Social Sci. 49 (2019), pp. 41–52. doi:10.1016/j.erss.2018.10.021.
  • M. Lippe, M. Bithell, N. Gotts, D. Natalini, P. Barbrook-Johnson, C. Giupponi, M. Hallier, G.J. Hofstede, C. Le Page, R.B. Matthews et al., Using agent-based modelling to simulate social-ecological systems across scales, GeoInformatica 23 (2019), pp. 269–298. doi:10.1007/s10707-018-00337-8.
  • H. Zhang and Y. Vorobeychik, Empirically grounded agent-based models of innovation diffusion: A critical review, Artif. Intell. Rev. 52 (2019), pp. 707–741. doi:10.1007/s10462-017-9577-z.
  • G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, A. Zinovyev, and L. Calzone, Physiboss: A multi-scale agent-based modelling framework integrating physical dimension and cell signalling, Bioinformatics 35 (2019), pp. 1188–1196. doi:10.1093/bioinformatics/bty766.
  • T. Haer, W.W. Botzen, and J.C. Aerts, Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach, Environ. Res. Lett. 14 (2019), pp. 044022. doi:10.1088/1748-9326/ab0770.
  • D. Geschke, J. Lorenz, and P. Holtz, The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers, Br.J. Soc. Psychol. 58 (2019), pp. 129–149. doi:10.1111/bjso.12286.
  • E.R. Groff, S.D. Johnson, and A. Thornton, State of the art in agent-based modeling of urban crime: An overview, J Quant Criminol 35 (2019), pp. 155–193. doi:10.1007/s10940-018-9376-y.
  • G. Fagiolo, M. Guerini, F. Lamperti, A. Moneta, and A. Roventini, Validation of agent-based models in economics and finance, in Computer Simulation Validation, Springer, Heidelberg, 2019, pp. 763–787.
  • L. Whitmarsh, I. Lorenzoni, and S. O’Neill, Engaging the Public with Climate Change: Behaviour Change and Communication, Whitmarsh, Lorraine, O'Neill, Saffron, and Lorenzoni, Irene, eds, Routledge, Abingdon-on-Thames, 2012.
  • J. Urry, Climate Change and Society, in Why the Social Sciences Matter, Springer, Heidelberg, 2015, pp. 45–59.
  • B. Beckage, L.J. Gross, K. Lacasse, E. Carr, S.S. Metcalf, J.M. Winter, P.D. Howe, N. Fefferman, T. Franck, A. Zia et al., Linking models of human behaviour and climate alters projected climate change, Nat. Clim. Chang. 8 (2018), pp. 79–84. doi:10.1038/s41558-017-0031-7.
  • S. Clayton, P. Devine-Wright, P.C. Stern, L. Whitmarsh, A. Carrico, L. Steg, J. Swim, and M. Bonnes, Psychological research and global climate change, Nat. Clim. Chang. 5 (2015), pp. 640–646. doi:10.1038/nclimate2622.
  • N. Chater, Facing up to the uncertainties of covid-19, Nat. Hum. Behav. 4 (2020), pp. 439. doi:10.1038/s41562-020-0865-2.
  • J.J. Van Bavel, K. Baicker, P.S. Boggio, V. Capraro, A. Cichocka, M. Cikara, M.J. Crockett, A.J. Crum, K.M. Douglas, J.N. Druckman et al., Using social and behavioural science to support covid-19 pandemic response, Nat. Hum. Behav. 4 (2020), pp. 460–471.
  • C. Betsch, How behavioural science data helps mitigate the covid-19 crisis, Nat. Hum. Behav. 4 (2020), pp. 438. doi:10.1038/s41562-020-0866-1.
  • E. Cuevas, An agent-based model to evaluate the covid-19 transmission risks in facilities, Comput. Biol. Med. 121 (2020), pp. 103827. doi:10.1016/j.compbiomed.2020.103827.
  • C.C. Kerr, R.M. Stuart, D. Mistry, R.G. Abeysuriya, G. Hart, K. Rosenfeld, P. Selvaraj, R.C. Nunez, B. Hagedorn, and L. George et al., Covasim: An agent-based model of covid-19 dynamics and interventions, PLoS Comput Biol, (2020), 17(7), pp. e1009149.
  • P.C. Silva, P.V. Batista, H.S. Lima, M.A. Alves, F.G. Guimarães, and R.C. Silva, Covid-abs: An agent-based model of covid-19 epidemic to simulate health and economic effects of social distancing interventions, Chaos. Solitons. Fractals. 139 (2020), pp. 110088. doi:10.1016/j.chaos.2020.110088.
  • C.M. Macal, Everything you need to know about agent-based modelling and simulation, J. Simul. 10 (2016), pp. 144–156. doi:10.1057/jos.2016.7.
  • A. Klabunde and F. Willekens, Decision-making in agent-based models of migration: State of the art and challenges, Eur. J. Popul. 32 (2016), pp. 73–97. doi:10.1007/s10680-015-9362-0.
  • L. An, V. Grimm, and B.L. Turner II, Meeting grand challenges in agent-based models, J. Artif. Soc. Social Simul. 23 (2020). doi:10.18564/jasss.4012.
  • D. Dhall, R. Kaur, and M. Juneja, Machine learning: A review of the algorithms and its applications, Proceedings of ICRIC 2019, Jammu, India, 2020, pp. 47–63.
  • P.C. Sen, M. Hajra, and M. Ghosh, Supervised classification algorithms in machine learning: A survey and review, in Emerging Technology in Modelling and Graphics, Springer, Heidelberg, 2020, pp. 99–111.
  • E. Samadi, A. Badri, and R. Ebrahimpour, Decentralized multi-agent based energy management of microgrid using reinforcement learning, Int. J. Electr. Power Energy Syst. 122 (2020), pp. 106211. doi:10.1016/j.ijepes.2020.106211.
  • C. Bone and S. Dragićević, Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management, Comput. Environ. Urban Syst. 34 (2010), pp. 162–174. doi:10.1016/j.compenvurbsys.2009.10.001.
  • A. Jalalimanesh, H.S. Haghighi, A. Ahmadi, and M. Soltani, Simulation-based optimization of radiotherapy: Agent-based modeling and reinforcement learning, Math. Comput. Simul. 133 (2017), pp. 235–248. doi:10.1016/j.matcom.2016.05.008.
  • I. Jang, D. Kim, D. Lee, and Y. Son, An agent-based simulation modeling with deep reinforcement learning for smart traffic signal control, in 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea. IEEE, 2018, pp. 1028–1030.
  • S. Hassanpour, A.A. Rassafi, V. Gonzalez, and J. Liu, A hierarchical agent-based approach to simulate a dynamic decision-making process of evacuees using reinforcement learning, J. Choice Modell. 39 (2021), pp. 100288. doi:10.1016/j.jocm.2021.100288.
  • I. Maeda, D. deGraw, M. Kitano, H. Matsushima, H. Sakaji, K. Izumi, and A. Kato, Deep reinforcement learning in agent based financial market simulation, J. Risk Financ. Manage. 13 (2020), pp. 71. doi:10.3390/jrfm13040071.
  • A. Collins, J. Sokolowski, and C. Banks, Applying reinforcement learning to an insurgency agent-based simulation, J. Def. Model. Simul. 11 (2014), pp. 353–364. doi:10.1177/1548512913501728.
  • E. Sert, Y. Bar-Yam, and A.J. Morales, Segregation dynamics with reinforcement learning and agent based modeling, Sci Rep 10 (2020), pp. 1–12. doi:10.1038/s41598-020-68447-8.
  • G. Jäger, Replacing rules by neural networks a framework for agent-based modelling, Big Data Cognit. Comput. 3 (2019), pp. 51. doi:10.3390/bdcc3040051.
  • G. Jäger, Using neural networks for a universal framework for agent-based models, Math. Comput. Model. Dyn. Syst. 27 (2021), pp. 162–178. doi:10.1080/13873954.2021.1889609
  • T.C. Schelling, Dynamic models of segregation, J. Math. Sociol. 1 (1971), pp. 143–186. doi:10.1080/0022250X.1971.9989794.
  • J.M. Epstein, and R. Axtell, Growing Artificial Societies: Social Science from the Bottom Up, Brookings Institution Press, Washington, DC, 1996.
  • E. Fehr and U. Fischbacher, The nature of human altruism, Nature 425 (2003), pp. 785–791. doi:10.1038/nature02043.
  • J.A. Piliavin and H.W. Charng, Altruism: A review of recent theory and research, Annu Rev Sociol. 16 (1990), pp. 27–65. Available at http://www.jstor.org/stable/2083262.
  • K. McAuliffe, P.R. Blake, N. Steinbeis, and F. Warneken, The developmental foundations of human fairness, Nat. Hum. Behav. 1 (2017), pp. 0042. Available at https://doi.org/10.1038/s41562-016-0042
  • T. Morgan and K. Laland, The biological bases of conformity, Front. Neurosci. 6 (2012), pp. 87. Available at https://www.frontiersin.org/article/10.3389/fnins.2012.00087.
  • J.C. Coultas, When in Rome … an evolutionary perspective on conformity, Group Processes Intergroup Relat. 7 (2004), pp. 317–331. Available at https://doi.org/10.1177/1368430204046141
  • L.K. Hansen and P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), pp. 993–1001. doi:10.1109/34.58871.
  • A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks“, in Proceedings of the Advances in Neural Information Processing Systems, MIT Press, Lake Tahoe, NV, USA, 2012, pp. 1097–1105.
  • A. Krogh, and J. Vedelsby, Neural network ensembles, cross validation, and active learning, Proceedings of the 7th International Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA, USA, (1995), pp. .
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.
  • F. Murtagh, Multilayer perceptrons for classification and regression, Neurocomputing 2 (1991), pp. 183–197. doi:10.1016/0925-2312(91)90023-5.
  • H. Gintis, Beyond homo economicus: Evidence from experimental economics, Ecol. Econ. 35 (2000), pp. 311–322. Available at https://www.sciencedirect.com/science/article/pii/S0921800900002160.
  • R.H. Thaler, From homo economicus to homo sapiens, J. Econ.Perspect. 14 (2000), pp. 133–141. Available at https://www.aeaweb.org/articles?id=10.1257/jep.14.1.133
  • R. Dorfman, A formula for the gini coefficient, Rev. Econ. Stat. 61 (1979), pp. 146–149. Available at http://www.jstor.org/stable/1924845.
  • B. Milanovic, A simple way to calculate the gini coefficient, and some implications, Econ. Lett. 56 (1997), pp. 45–49. Available at https://www.sciencedirect.com/science/article/pii/S0165176597001018.
  • R. Axelrod and W. Hamilton, The evolution of cooperation, Science. 211 (1981), pp. 1390–1396. Available at https://science.sciencemag.org/content/211/4489/1390.
  • M. McGinty and G. Milam, Public goods provision by asymmetric agents: Experimental evidence, Soc. Choice Welfare. 40 (2013), pp. 1159–1177. Available at https://doi.org/10.1007/s00355-012-0658-2
  • E. Fehr and K.M. Schmidt, A theory of fairness, competition, and cooperation*, Q. J. Econ. 114 (1999), pp. 817–868. Available at https://doi.org/10.1162/003355399556151
  • J. Andreoni, W. Harbaugh, and L. Vesterlund, The carrot or the stick: Rewards, punishments, and cooperation, Am. Econ. Rev. 93 (2003), pp. 893–902. Available at https://www.aeaweb.org/articles?id=10.1257/000282803322157142
  • E. Fehr and K.M. Schmidt, Fairness, incentives, and contractual choices, Eur Econ Rev 44 (2000), pp. 1057–1068. doi:10.1016/S0014-2921(99)00046-X.
  • G.E. Bolton and A. Ockenfels, Self-centered fairness in games with more than two players, Handb. Exp. Econ. Results. 1 (2008), pp. 531–540.
  • T. Dietz, Altruism, self-interest, and energy consumption, Proc. Natl. Acad. Sci. 112 (2015), pp. 1654–1655. Available at https://www.pnas.org/content/112/6/1654.
  • D.G. Rand and Z.G. Epstein, Risking your life without a second thought: Intuitive decision-making and extreme altruism, PLOS ONE. 9 (2014), pp. 1–6. Available at https://doi.org/10.1371/journal.pone.0109687
  • E. Fehr and B. Rockenbach, Human altruism: Economic, neural, and evolutionary perspectives, Curr. Opin. Neurobiol. 14 (2004), pp. 784–790. Available at https://www.sciencedirect.com/science/article/pii/S0959438804001606.
  • U. Fischbacher, S. Gächter, and E. Fehr, Are people conditionally cooperative? evidence from a public goods experiment, Econ Lett 71 (2001), pp. 397–404. doi:10.1016/S0165-1765(01)00394-9.
  • N. Gilbert and P. Terna, How to build and use agent-based models in social science, Mind Soc. 1 (2000), pp. 57–72. doi:10.1007/BF02512229.
  • K.H. Van Dam, I. Nikolic, and Z. Lukszo, Agent-based Modelling of Socio-technical Systems, Vol. 9, Springer Science & Business Media, Heidelberg, 2012.