Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 28, 2022 - Issue 1
775
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimentally-verified approach for enhancing fluid drag force simulation in vertical oilwell drill strings

ORCID Icon &
Pages 197-228 | Received 02 May 2022, Accepted 28 Oct 2022, Published online: 12 Nov 2022

References

  • J.J. Bailey and I. Finnie, An analytical study of drill-string vibration, J. Eng. Ind. 82 (5 1960), pp.122–127. 10.1115/1.3663017
  • M. Paidoussis, Fluid-structure Interactions: Slender Structures and Axial Flow, Vol. 1, San Diego, USA: Academic Press. 1998. doi:10.3327/jaesj.47.229.
  • M. Paidoussis and N.T. Issid, Dynamic stability of pipes conveying fluid, J. Sound Vib. 33 (3) (1974), pp. 267–294. doi:10.1016/S0022-460X(74)80002-7.
  • W.R. Tucker and W. Charles, An integrated model for drill-string dynamics, J. Sound Vib. 224 (1) (1999), pp. 123–165. doi:10.1006/jsvi.1999.2169.
  • S. Chen, Fluid damping for circular cylindrical structures, Nucl. Eng. Des. 63 (1) (1981), pp. 81–100. doi:10.1016/0029-5493(81)90018-2.
  • S. Mejbahul. Modeling and simulation of vibration in deviated wells. PhD thesis, Memorial University of Newfoundland, 2017.
  • Q. Qian, L. Wang, and N. Qiao, Vibration and stability of vertical upward-fluid-conveying pipe immersed in rigid cylindrical channel, Acta Mech. Solida Sin. 21 (5) (2008), pp. 331–340. doi:10.1007/s10338-008-0852-z.
  • X. Hua Zhu and B. Li, Numerical simulation of dynamic buckling response considering lateral vibration behaviors in drillstring, J. Pet. Sci. Eng. 173 (September 2018) (2019), pp. 770–780. doi:10.1016/j.petrol.2018.09.090.
  • P. M.p, L.T. P, S. Prabhakar et al., Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow, J Fluids Struct 24 (1) (2008), pp. 111–128. doi:10.1016/j.jfluidstructs.2007.07.004.
  • G. Rideout, A. Ghasemloonia, F. Arvani, and S. Butt, An intuitive and efficient approach to integrated modelling and control of three-dimensional vibration in long shafts, Int. J. Simul. Process 10 (2) (2015), pp. 163–178. doi:10.1504/IJSPM.2015.070468.
  • F. Arvani, D.G.R. Md Mejbahul Sarker, and D.B. Stephen, Design and development of an engineering drilling simulator and application for offshore drilling for MODUs and deepwater environments. Society of Petroleum Engineers - SPE Deepwater Drilling and Completions Conference 2014; Galveston, Texas, USA, 417–433, 2014.
  • T.G. Ritto, C. Soize, and R. Sampaio, Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction, Int J Non Linear Mech 44 (8) (2009), pp. 865–876. doi:10.1016/j.ijnonlinmec.2009.06.003.
  • M. Sarker, G. Rideout, and S. Butt, Dynamic model for longitudinal and torsional motions of a horizontal oilwell drillstring with wellbore stick-slip friction, J. Pet. Sci. Eng. 150 (2017), pp. 272–287. doi:10.1016/j.petrol.2016.12.010.
  • D. Xie, Z. Huang, M. Yachao, V. Vaziri, M. Kapitaniak, and M. Wiercigroch, Nonlinear dynamics of lump mass model of drill-string in horizontal well, Int. J. Mech. Sci. 174 (2020), pp. 105450. doi:10.1016/j.ijmecsci.2020.105450.
  • V.P. Feodos, Vibrations and stability of a pipe when liquid flows through it, Inzhenernyi Sbornik 10 (1951), pp. 69–70.
  • H. Ashley and G. Haviland, Bending vibrations of a pipe line containing flowing fluid, J. Appl. Mech. 17 (9 1950), pp.229–232. 10.1115/1.4010122
  • F. Niordson, Vibrations of a Cylindrical Tube Containing Flowing Fluid. Kungliga Tekniska Hogskolans, Handlingar (Stockholm): Göteborg Elanders Boktr, 1953.
  • S. Chen, M.W. Wambsganss, and J.A. Jendrzejczyk, Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids. Argonne, Chicago: American Society of Mechanical Engineers, 1976.
  • R. Miller, The Effects of Frequency and Amplitude of Oscillation on the Hydrodynamic Masses of Irregular Shaped Bodies. Kingston, USA: University of Rhode Island, 1965.
  • R. Chilukuri, Added mass and damping for cylinder vibrations within a confined fluid using deforming finite elements, J Fluids Eng. 109 (09 1987), pp. 283–288. 10.1115/1.3242662
  • E. Kjolsing and M. Todd, Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid, J. Sound Vib. 394 (2017), pp. 575–592. doi:10.1016/j.jsv.2017.01.045.
  • F. Liang, Y. Qian, Y. Chen, and A. Gao, Nonlinear forced vibration of spinning pipes conveying fluid under lateral harmonic excitation, Int J Appl Mech 13 (9) (2021), pp. 2150098. doi:10.1142/S1758825121500988.
  • R.A. Ibrahim, Overview of mechanics of pipes conveying fluids-part I: Fundamental studies, J. Press. Vessel Technol. Trans. ASME. 132 (2010), pp. 0340011–03400132.
  • G. Rideout, F. Arvani, S. Butt, and E. Fallahi, Three-dimensional multi-body bond graph model for vibration control of long shafts-application to oilwell drilling. Proc. Integrated Modeling and Analysis in Applied Control and Automation; Athens, Greece, 25–27, 2013.
  • H. Qiu, Y. Jianming, S. Butt, and Z. Jinghan, Investigation on random vibration of a drillstring, J. Sound Vib. 406 (2017), pp. 74–88. doi:10.1016/j.jsv.2017.06.016.
  • Y. Khulief and H. Al-Naser, Finite element dynamic analysis of drillstrings, Finite Elem. Anal. Des. 41 (13) (2005), pp. 1270–1288. doi:10.1016/j.finel.2005.02.003.
  • Y. Khulief, F. Al-Sulaiman, and S. Bashmal, Vibration analysis of drillstrings with string—borehole interaction, Proc Inst Mech Eng C J Mech Eng Sci. 222 (2008), pp. 2099–2110.
  • Y. Khulief and F. Al-Sulaiman, Laboratory investigation of drillstring vibrations, Proc Inst Mech Eng C J Mech Eng Sci. 223 (2009), pp. 2249–2262.
  • S. Scampoli, High-fidelityfluid-structure interactions, Ansys Adv. 6 (2012), pp. 14–16.
  • W. Young, R. Budynas, and A. Sadegh, Dynamic and temperature Stresses. Roark’s Formulas for Stress and Strain, Edition 8, Vol. 7, New York: McGrawHill, 2002, pp. 774.
  • M. Douglas, Design and Analysis of Experiments. New Jersey: John Wiley & Sons, 2017.
  • M. Islam and L. Lye, Combined use of dimensional analysis and modern experimental design methodologies in hydrodynamics experiments, Ocean Eng. 36 (3–4) (2009), pp. 237–247. doi:10.1016/j.oceaneng.2008.11.004.
  • M. Anderson and P. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. New York: Productivity Press, 2016.
  • A. Aydar, Utilization of response surface methodology in optimization of extraction of plant materials, in Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes, V. Silva, ed., chapter 10 IntechOpen , Rijeka, 2018. pp. 160.
  • M.R. Riazi, Exploration and Production of Petroleum and Natural Gas. West Conshohocken, PA: ASTM International, 2016.
  • Ansys. Ansys FLUENT 12.0 user’s guide - 12.13.19 modeling turbulence with non-Newtonian fluids, 2009.
  • M. Galagedarage Don, Github - mihiranpathmika/bond-graph-simulations: Bond graph simulation files with constant damping and the damping model developed.
  • Ansys. FSI is not working for soft materials — ANSYS learning forum, 2020. Accessed: 2022 April 10.
  • Ansys. 2-way fsi fails during first time step — Ansys learning forum, 2022. Accessed: 2022 April 10.
  • H. Dou, B. Khoo, and H. Tsai, Determining the critical condition for turbulent transition in a full-developed annulus flow, J. Pet. Sci. Eng. 73 (1–2) (2010), pp. 41–47. doi:10.1016/j.petrol.2010.05.003.