Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 29, 2023 - Issue 1
420
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling and analysis of thin film flow of Fuzzified Johnson Segalman nanofluid using fuzzy extension of He-Laplace scheme

, , , ORCID Icon &
Pages 286-314 | Received 13 Apr 2023, Accepted 23 Oct 2023, Published online: 01 Dec 2023

References

  • L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965), pp. 338–353. doi:10.1016/S0019-9958(65)90241-X.
  • I. Beg, R. Noshad Jamil, and T. Rashid, Diminishing choquet hesitant 2-tuple linguistic aggregation operator for multiple attributes group decision making, Inter. J. Anal. Appl 17 (2019), pp. 76–104.
  • A. Fahmi, Group decision based on trapezoidal neutrosophic dombi fuzzy hybrid operator, Granul. Comput. 7 (2) (2022), pp. 305–314. doi:10.1007/s41066-021-00268-0.
  • M. Rahaman, S. Prasad Mondal, E.A. Algehyne, A. Biswas, and S. Alam, A method for solving linear difference equation in gaussian fuzzy environments, Granul. Comput. 7 (1) (2022), pp. 63–76. doi:10.1007/s41066-020-00251-1.
  • M. Ranjbar, S. Effati, and S. Mohsen Miri, Fully hesitant fuzzy linear programming with hesitant fuzzy numbers, Eng. Appl. Artif. Intell. 114 (2022), pp. 105047. doi:10.1016/j.engappai.2022.105047.
  • Y. Tansel İç and M. Yurdakul, A new long term (strategic) ranking model for machining center selection decisions based on the review of machining center structural components using triangular fuzzy numbers, Decision Anal. J 4 (2022), pp. 100081. doi:10.1016/j.dajour.2022.100081.
  • S.C. Subrat Kumar Jena, V. Mahesh, D. Harursampath, H.M. Sedighi, and H.M. Sedighi, Free vibration of functionally graded beam embedded in winkler-pasternak elastic foundation with geometrical uncertainties using symmetric gaussian fuzzy number, Eur. Phys. J. Plus 137 (3) (2022), pp. 1–18. doi:10.1140/epjp/s13360-022-02607-9.
  • S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Sys 24 (3) (1987), pp. 319–330. doi:10.1016/0165-0114(87)90030-3.
  • O. Kaleva, Fuzzy differential equations, Fuzzy Sets Sys 24 (3) (1987), pp. 301–317. doi:10.1016/0165-0114(87)90029-7.
  • Y. Wen and R. Jafari, Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number, Wiley-IEEE Press, 2019.
  • J.J. Nieto, The cauchy problem for continuous fuzzy differential equations, Fuzzy Sets Sys 102 (2) (1999), pp. 259–262. doi:10.1016/S0165-0114(97)00094-8.
  • P. Prakash, J.J. Nieto, N. Uthirasamy, and G.S. PRIYA, Solving fuzzy boundary value problem by differential transform method, Neural Parallel Sci. Comput 22 (2014), pp. 59–74.
  • M. Najariyan, N. Pariz, and H. Vu, Fuzzy linear singular differential equations under granular differentiability concept, Fuzzy Sets Sys 429 (2022), pp. 169–187. doi:10.1016/j.fss.2021.01.003.
  • A. Khastan and J.J. Nieto, A boundary value problem for second order fuzzy differential equations, Nonlinear Anal Theory Methods Appl 72 (9–10) (2010), pp. 3583–3593. doi:10.1016/j.na.2009.12.038.
  • M. Jabir Khan, P. Kumam, N. Aedh Alreshidi, N. Shaheen, W. Kumam, Z. Shah, and P. Thounthong, The renewable energy source selection by remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets, Symmetry 12 (6) (2020), pp. 977. doi:10.3390/sym12060977.
  • M. Qayyum, A. Tahir, and S. Acharya. New solutions of fuzzy-fractional fisher models via optimal he–laplace algorithm, Int. J. Intell. Syst. 2023 (2023), pp. 1–21. doi:10.1155/2023/7084316.
  • M. Qayyum, A. Tahir, S. Tauseef Saeed, and A. Akgül, Series-form solutions of generalized fractional-fisher models with uncertainties using hybrid approach in caputo sense, Chaos Soliton. Fract. 172 (2023), pp. 113502. doi:10.1016/j.chaos.2023.113502.
  • S. Afzal, M. Qayyum, and G. Chambashi, Heat and mass transfer with entropy optimization in hybrid nanofluid using heat source and velocity slip: A hamilton-crosser approach, Sci Rep. 13 (1) (2023). doi:10.1038/s41598-023-39176-5
  • M. Qayyum, S. Afzal, M.R. Ali, M. Sohail, N. Imran, and G. Chambashi, Unsteady hybrid nanofluid (uo2, mwcnts/blood) flow between two rotating stretchable disks with chemical reaction and activation energy under the influence of convective boundaries, Sci Rep. 13 (1) (2023). doi:10.1038/s41598-023-32606-4
  • M. Qayyum, S. Afzal, S. Tauseef Saeed, A. Akgül, and M. Bilal Riaz, Unsteady hybrid nanofluid (cu-UO2/blood) with chemical reaction and non-linear thermal radiation through convective boundaries: An application to bio-medicine, Heliyon 9 (6) (2023), pp. e16578. doi:10.1016/j.heliyon.2023.e16578.
  • M. Qayyum, M. Bilal Riaz, and S. Afzal, Analysis of blood flow of unsteady carreau-yasuda nanofluid with viscous dissipation and chemical reaction under variable magnetic field, Heliyon 9 (6) (2023), pp. e16522. doi:10.1016/j.heliyon.2023.e16522.
  • M. Qayyum, S. Afzal, E. Ahmad, and S. Araci, Fractional modeling of non-newtonian casson fluid between two parallel plates, J. Math 2023 (2023), pp. 1–12. doi:10.1155/2023/5517617.
  • M. Nadeem, A. Elmoasry, I. Siddique, F. Jarad, R. Muhammad Zulqarnain, J. Alebraheem, N.S. Elazab, and A.M. Khalil, Study of triangular fuzzy hybrid nanofluids on the natural convection flow and heat transfer between two vertical plates, Comput Intell Neurosci 2021 (2021), pp. 1–15. doi:10.1155/2021/3678335.
  • M. Nadeem, I. Siddique, F. Jarad, R. Noshad Jamil, and D. Pamučar, Numerical study of mhd third-grade fluid flow through an inclined channel with ohmic heating under fuzzy environment, Math. Problems Eng 2021 (2021), pp. 1–17. doi:10.1155/2021/9137479.
  • I. Siddique, R. Noshad Jamil, M. Nadeem, H. Abd El-Wahed Khalifa, F. Alotaibi, I. Khan, M. Andualem, and A. Jajarmi, Fuzzy analysis for thin-film flow of a third-grade fluid down an inclined plane, Math. Problems Eng 2022 (2022), pp. 1–16. doi:10.1155/2022/3495228.
  • M. Nadeem, I. Siddique, R. Ali, N. Alshammari, R. Noshad Jamil, N. Hamadneh, I. Khan, M. Andualem, and A. Majumder, Study of third-grade fluid under the fuzzy environment with couette and poiseuille flows, Math. Problems Eng 2022 (2022), pp. 1–19. doi:10.1155/2022/2458253.
  • M. Nadeem, I. Siddique, M. Bilal, and R. Ali, Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow past over a stretching/shrinking riga wedge, AIMS Math. 8 (1) (2022), pp. 295–316. doi: 10.3934/math.2023014.
  • R.W. Kolkka, D.S. Malkus, M.G. Hansen, and G.R. Ierley, Spurt phenomena of the johnson-segalman fluid and related models, J Nonnewton Fluid Mech 29 (1988), pp. 303–335. doi:10.1016/0377-0257(88)85059-6.
  • M. Kanwal, X. Wang, H. Shahzad, M. Sajid, and C. Yiqi, Mathematical modeling of johnson-segalman fluid in blade coating process, J. Plast. Film Sheet. 37 (4) (2021), pp. 463–489. doi:10.1177/8756087920983551.
  • M. Javed, A mathematical framework for peristaltic mechanism of non-newtonian fluid in an elastic heated channel with hall effect, Multidis. Model. Mat Struct 17 (2) (2020), pp. 360–372. doi:10.1108/MMMS-11-2019-0200.
  • T. Bodnár and A. Sequeira, Analysis of the shear-thinning viscosity behavior of the johnson–segalman viscoelastic fluids, Fluids 7 (1) (2022), pp. 36. doi:10.3390/fluids7010036.
  • M.M. Bhatti, T. Abbas, and M.M. Rashidi, Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-newtonian nanofluid through a porous shrinking sheet, J. Magn 21 (3) (2016), pp. 468–475. doi:10.4283/JMAG.2016.21.3.468.
  • M. Rashidi, M. Bhatti, M. Abbas, and M. Ali, Entropy generation on MHD blood flow of nanofluid due to peristaltic waves, Entropy 18 (4) (2016), pp. 117. doi:10.3390/e18040117.
  • A. Zeeshan, A. Riaz, F. Alzahrani, A. Moqeet, and A. Ahmadian, Flow analysis of two-layer nano/johnson–segalman fluid in a blood vessel-like tube with complex peristaltic wave, Math. Problems Eng 2022 (2022), pp. 1–18. doi:10.1155/2022/5289401.
  • Y. Khan, S. Akram, M. Athar, K. Saeed, T. Muhammad, A. Hussain, M. Imran, and H.A. Alsulaimani, The role of double-diffusion convection and induced magnetic field on peristaltic pumping of a johnson–segalman nanofluid in a non-uniform channel, Nanomaterials 12 (7) (2022), pp. 1051. doi:10.3390/nano12071051.
  • C.D. Denson, The drainage of newtonian liquids entrained on a vertical surface, Ind. Eng. Chem. Fund. 9 (3) (1970), pp. 443–448. doi:10.1021/i160035a022.
  • A.M. Siddiqui, R. Mahmood, and Q.K. Ghori, Some exact solutions for the thin film flow of a PTT fluid, Phys Lett A 356 (4–5) (2006), pp. 353–356. doi:10.1016/j.physleta.2006.03.071.
  • A.M. Siddiqui, R. Mahmood, and Q.K. Ghori, Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane, Chaos Soliton. Fract. 35 (1) (2008), pp. 140–147. doi:10.1016/j.chaos.2006.05.026.
  • S. Ullah, K. Akhtar, N. Alam Khan, and A. Ullah, Analysis of thin film flow of generalized maxwell fluid confronting withdrawal and drainage on non-isothermal cylindrical surfaces, Adv. Mech. Eng 11 (10) (2019), pp. 168781401988100. doi:10.1177/1687814019881005.
  • Y. Ruan, A. Nadim, and M. Chugunova, Thin liquid film resulting from a distributed source on a vertical wall, Phys. Rev. Fluids. 5 (6) (2020). doi:10.1103/PhysRevFluids.5.064004
  • M.Q. Farnaz, S. Inayat Ali Shah, S.-W. Yao, N. Imran, and M. Sohail, Homotopic fractional analysis of thin film flow of oldroyd 6-constant fluid, Alex. Eng. J. 60 (6) (2021), pp. 5311–5322. doi:10.1016/j.aej.2021.04.036.
  • S. Nasir, Z. Shah, S. Islam, E. Bonyah, and T. Gul, Darcy forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet, AIP Adv. 9 (1) (2019), pp. 015223. doi:10.1063/1.5083972.
  • S.A.S. Sehrish, A. Mouldi, and N. Sene, Nonlinear convective SiO2 and TiO2 hybrid nanofluid flow over an inclined stretched surface, null 2022 (2022), pp. 1–11. doi:10.1155/2022/6237698.
  • Z. Shah, A. Ullah, E. Bonyah, M. Ayaz, S. Islam, and I. Khan, Hall effect on titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface, AIP Adv. 9 (5) (2019), pp. 055113. doi:10.1063/1.5099435.
  • S. Ahmed and X. Hang, Mixed convection in gravity-driven thin nano-liquid film flow with homogeneous–heterogeneous reactions, Phys. Fluids 32 (2) (2020), pp. 023604. doi:10.1063/1.5140366.
  • Z. Shah, E.O. Alzahrani, A. Dawar, W. Alghamdi, and M. Zaka Ullah, Entropy generation in MHD second-grade nanofluid thin film flow containing CNTs with cattaneo-christov heat flux model past an unsteady stretching sheet, Appl. Sci. 10 (8) (2020), pp. 2720. doi:10.3390/app10082720.
  • M. Kamran Alam, M.T. Rahim, T. Haroon, S. Islam, and A.M. Siddiqui, Solution of steady thin film flow of johnson–segalman fluid on a vertical moving belt for lifting and drainage problems using adomian decomposition method, Appl. Math. Comput. 218 (21) (2012), pp. 10413–10428. doi:10.1016/j.amc.2012.03.095.
  • M. Madani and M. Fathizadeh, Homotopy perturbation algorithm using laplace transformation, Nonlinear Sci. Lett. A 1 (2010), pp. 263–267.
  • M. Qayyum, E. Ahmad, S. Tauseef Saeed, A. Akgül, and M. Bilal Riaz, Traveling wave solutions of generalized seventh-order time-fractional kdv models through he-laplace algorithm, Alex. Eng. J. 70 (2023), pp. 1–11. doi:10.1016/j.aej.2023.02.007.
  • H. Ji-Huan, G.M. Moatimid, and D.R. Mostapha, Nonlinear instability of two streaming-superposed magnetic reiner-rivlin fluids by he-laplace method, J. Electroanal. Chem. 895 (2021), pp. 115388. doi:10.1016/j.jelechem.2021.115388.
  • B. Hong, J. Wang, and L. Chen, Analytical solutions to a class of fractional coupled nonlinear schrödinger equations via-laplace-hpm technique, AIMS Math 8 (7) (2023), pp. 15670–15688. doi:10.3934/math.2023800.
  • N. Gasilov, S.G. Amrahov, and A. Golayoglu Fatullayev, A geometric approach to solve fuzzy linear systems of differential equations, arXiv Preprint arXiv: 0910.4307 (2009).
  • M.W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows non-affine deformation, J Nonnewton Fluid Mech 2 (3) (1977), pp. 255–270. doi:10.1016/0377-0257(77)80003-7.