Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 29, 2023 - Issue 1
612
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quadratic upwind differencing scheme in the finite volume method for solving the convection-diffusion equation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 265-285 | Received 02 Jul 2023, Accepted 08 Nov 2023, Published online: 27 Nov 2023

References

  • E. Hernandez-Martinez, H. Puebla, F. Valdes-Parada, and J. Alvarez-Ramirez, Nonstandard finite difference schemes based on Green’s function formulations for reaction–diffusion–convection systems, Chem. Eng. Sci. 94 (2013), pp. 245–255. doi:10.1016/j.ces.2013.03.001.
  • J.D. Anderson and J. Wendt, Computational Fluid Dynamics, Vol. 206. Berlin, Heidelberg: Springer, 1995.
  • S. Rehman, N. Muhammad, M. Alshehri, S. Alkarni, S.M. Eldin, and N.A. Shah, Analysis of a viscoelastic fluid flow with Cattaneo–Christov heat flux and soret–Dufour effects, Case Stud. Therm. Eng. 49 (2023), pp. 103223. doi:10.1016/j.csite.2023.103223.
  • M.N. Ozisik, Heat Transfer: A Basic Approach, McGraw-Hill, New York, 1985.
  • N. Muhammad, S. Nadeem, and F.D. Zaman, Transmission of the thermal energy in a ferromagnetic nanofluid flow, Int. J. Mod. Phys. B. 36 (32) (2022). doi:10.1142/S0217979222502368
  • N. Naeem, D. Vieru, N. Muhammad, and N. Ahmed, Axial Symmetric Granular Flow Due to Gravity in a Circular Pipe, Symmetry 14 (10) (2022), pp. 1–12. doi:https://doi.org/10.3390/sym14102013.
  • J. Philibert, One and a half century of diffusion: Fick, Einstein, before and beyond, Diffus. Fundam 2 (2005), pp. .1.1–.1.10.
  • N.M. Buckman, The Linear Convection-Diffusion Equation in Two Dimensions. 18.303 Linear Partial Differential Equations. Cambridge: Massachusetts Institute of Technology, 2016, pp. 1–6.
  • M. Usman, A. Hussain, F.D. Zaman, and S.M. Eldin, Group invariant solutions of wave propagation in phononic materials based on the reduced micromorphic model via optimal system of Lie subalgebra, Results Phys 48 (2023), pp. 106413. doi:10.1016/j.rinp.2023.106413.
  • S. Rehman, A. Hussain, J.U. Rahman, N. Anjum, and T. Munir, Modified Laplace based variational iteration method for the mechanical vibrations and its applications, acta mechanica et automatica 16 (2) (2022), pp. 98–102. doi:10.2478/ama-2022-0012.
  • A. Hussain, A.H. Kara, and F.D. Zaman, An invariance analysis of the vakhnenko–parkes equation, Chaos Solitons Fractals 171 (2023), pp. 113423. doi:https://doi.org/10.1016/j.chaos.2023.113423.
  • A. Hussain, M. Usman, F.D. Zaman, and S.M. Eldin, Optical solitons with DNA dynamics arising in oscillator-chain of Peyrard–Bishop model, Results Phys 50 (2023), pp. 106586. doi:10.1016/j.rinp.2023.106586.
  • M. Usman, A. Hussain, and F.D. Zaman, Invariance analysis of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets, Phys. Scr. 98 (9) (2023), pp. 095205. doi:https://doi.org/10.1088/1402-4896/acea46.
  • A. Hussain, M. Usman, F.D. Zaman, and S.M. Eldin, Symmetry analysis and invariant solutions of Riabouchinsky Proudman Johnson equation using optimal system of Lie subalgebras, Results Phys 49 (2023), pp. 106507. doi:10.1016/j.rinp.2023.106507.
  • M. Usman, A. Hussain, F.D. Zaman, I. Khan, and S.M. Eldin, Reciprocal bäcklund transformations and traveling wave structures of some non-linear pseudo-parabolic equations, Partial Differ. Equ. Appl. Math 7 (2023), pp. 100490. doi:10.1016/j.padiff.2023.100490.
  • M. Usman and F.D. Zaman, Lie symmetry analysis and conservation laws of non-linear (2+1) elastic wave equation, Arab J. Math 12 (1) (2022), pp. 265–276. doi:10.1007/s40065-022-00392-y.
  • H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics, Taiwanese J. Math 4 (1) (2000), pp. 65–103. doi:10.11650/twjm/1500407199.
  • F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics, Vol. 113. Cham: Springer, 2016.
  • D. Causona, C. Mingham, and L. Qia, Introductory Finite Volume Methods for PDEs, Manchester Metropolitan University, Manchester, UK, 2011.
  • F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Vol. 6, Springer, Berlin/Heidelberg, Germany, 2016.
  • N. Muhammad and K.A.M. Alharbi, OpenFoam for computational hydrodynamics using finite volume method, Int. J. Mod. Phys. B. 37 (3) (2022). doi:10.1142/S0217979223500261
  • N. Muhammad and N. Ullah, Simulation of flow on the hydroelectric power dam spillway via OpenFOAM, Eur. Phys. J. Plus. 136 (11) (2021). doi:10.1140/epjp/s13360-021-02128-x
  • N. Muhammad, M.M.A. Lashin, and S. Alkhatib, Simulation of turbulence flow in OpenFOAM using the large eddy simulation model, Proc. Inst. Mech. Eng, Part E: J. Process Mech. Eng. 236 (5) (2022), pp. 2252–2265. doi:10.1177/09544089221109736.
  • N. Muhammad, S. Ullah, and U. Khan, Energy recovery mechanism of air injection in higher methane cut reservoir, Int. J. Mod. Phys. B. 36 (24) (2022). doi:10.1142/S0217979222501533
  • N. Muhammad, F.D. Zaman, and M.T. Mustafa, OpenFOAM for computational combustion dynamics, Eur. Phys. J. Spec. Top 231 (13–14) (2022), pp. 2821–2835. doi:10.1140/epjs/s11734-022-00606-6.
  • N. Muhammad, Finite volume method for simulation of flowing fluid via OpenFOAM, Eur. Phys. J. Plus. 136 (10) (2021). doi:10.1140/epjp/s13360-021-01983-y
  • A. Hussain, Z. Zheng, and E.F. Anley, Numerical analysis of convection–diffusion using a modified upwind approach in the finite volume method, Math. 8 (1869) (2020), pp. 1–21. doi:10.3390/math8111869.
  • Z.F. Tiana and P.X. Yua, A high-order exponential scheme for solving 1D unsteady convection–diffusion equations, J. Comput. Appl. Math. 235 (8) (2011), pp. 2477–2491. doi:10.1016/j.cam.2010.11.001.
  • T. Linss, Uniform point-wise convergence of an upwind finite volume method on layer-adapted meshes, Zeitschrift für Angewandte Mathematik und Mechanik 82 (4) (2002), pp. 247–254. doi:10.1002/1521-4001(200204)82:4<247:AID-ZAMM247>3.0.CO;2-9.
  • M.R. Patel and J.U. Pandya, A research study on unsteady state convection diffusion flow with the adoption of the finite volume technique, J. Appli. Math. Comput. Mech 20 (4) (2021), pp. 65–76. doi:10.17512/jamcm.2021.4.06.
  • R. Edwan, S. Al-Omari, M. Al-Smadi, S. Momani, and A. Fulga, A new formulation of finite difference and finite volume methods for solving a space fractional convection–diffusion model with fewer error estimates, Adv. Differ. Equ 2021 (1) (2021), pp. 510. doi:https://doi.org/10.1186/s13662-021-03669-2.
  • ] R. Saadeh, Numerical solutions of fractional convection-diffusion equation using finite-difference and finite-volume schemes, J. Math. Comput. Sci. 11, 6 (2021), pp. 1927–5307. doi:10.28919/jmcs/6658
  • M.R. Patel and J.U. Pandya, Numerical study of a one and two-dimensional heat flow using finite volume, Mater. Today Proc. 10.1016/j.matpr.2021.04.413.
  • J. Nakao, J. Chen, and J.M. Qiu, An Eulerian-Lagranian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equation, J. Comput. Phys. 470 (2022), pp. 111589. doi:10.1016/j.jcp.2022.111589.
  • C. Chainais-Hillairet and M. Herda, Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations, IMA J. Numer. Anal 40 (4) (2020), pp. 2473–2504. doi:10.1093/imanum/drz037.
  • I. Asmouh, M. El-Amrani, M. Seaid, and N. Yebari, A conservative semi-Lagrangian finite volume method for convection–diffusion problems on unstructured grids, J. Sci. Comput 85 (1) (2020), pp. 11. doi:https://doi.org/10.1007/s10915-020-01316-8.
  • M. Xu, A finite volume scheme for unsteady linear and nonlinear convection-diffusion-reaction problems, Int. Commun. Heat Mass Transf 139 (2022), pp. 106417. doi:10.1016/j.icheatmasstransfer.2022.106417.
  • E.F. Anley and Z. Zheng, Finite difference approximation method for a space fractional convection-diffusion equation with variable coefficients, Symmetry 12 (3) (2020), pp. 485. doi:10.3390/sym12030485.
  • H.F. Peng, K. Yang, M. Cui, and X.W. Gao, Radial integration boundary element method for solving two-dimensional unsteady convection-diffusion problem, Eng. Anal. Bound. Elem. 102 (2019), pp. 39–50. doi:10.1016/j.enganabound.2019.01.019.
  • V. Aswin, A. Awasthi, and C. Anu, A comparative study of numerical schemes for convection-diffusion equation, Procedia. Eng 127 (2015), pp. 621–627. doi:10.1016/j.proeng.2015.11.353.
  • M. Xu, A modified finite volume method for convection-diffusion-reaction problems, Int. J. Heat Mass Tran. 117 (2018), pp. 658–668. doi:10.1016/j.ijheatmasstransfer.2017.10.003.
  • M.T. Xu, A type of high order schemes for steady convection-diffusion problems, Int. J. Heat Mass. Transf. 107:1044–1053, (2017).
  • R. Mohammadi, Exponential B–Spline solution of convection-Diffusion equations, Appl. Math. 4 (6) (2013), pp. 933–944. doi:10.4236/am.2013.46129.
  • B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19 (1) (1979), pp. 59–98. doi:10.1016/0045-7825(79)90034-3.
  • J. Fuhrmann, M. Ohlberger, and C. Rohde, Finite Volumes for Complex Applications VII: Methods and Theoretical Aspects, Vol. 77, Springer; FVCA, Berlin, Germany, 2014.
  • J. Mencinger, Numerical simulation of melting in two-dimensional cavity using adaptive grid, J. Comput. Phys. 198 (1) (2004), pp. 243–264. doi:10.1016/j.jcp.2004.01.006.
  • E.J. Sellountos, A single domain velocity - vorticity Fast Multipole Boundary Domain Element Method for three dimensional incompressible fluid flow problems, Eng. Anal. Bound. Elem. 114 (2020), pp. 74–93. doi:10.1016/j.enganabound.2020.02.006.
  • P. Pathmanathan, M.O. Bernabeu, R. Bordas, J. Cooper, A. Garny, J.M. Pitt-Francis, J.P. Whiteley, and D.J. Gavaghan, A numerical guide to the solution of the bidomain equations of cardiac electrophysiology, Prog. Biophys. Mol. Biol. 102 (2–3) (2010), pp. 136–155. doi:10.1016/j.pbiomolbio.2010.05.006.
  • Y. Coudière, C. Pierre, O. Rousseau, and R. Turpault, A 2D/3D discrete duality finite volume scheme, Application to ECG simulation, Int. J. Finite 6 (2009), pp. 1–24.
  • P.R. Johnston, A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia, Comput. Methods Biomech. Biomed. Eng. 13 (2) (2010), pp. 157–170. http://dx.doi.org/10.1080/10255840903067072
  • T. Munir, Analysis of coupling interface problems for bi-domain diffusion equations, 2020 Ph.D. thesis.
  • H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Edinburgh, UK, 2007. www.pearsoned.co.uk/versteeg.
  • R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems, Intencience, New York, 1967.
  • G.G. Botte, J.A. Ritter, and R.E. White, Comparison of finite difference and control volume methods for solving differential equations, Comput. Chem. Eng. 24 (12) (2000), pp. 2633–2654. doi:10.1016/S0098-1354(00)00619-0.