Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 29, 2023 - Issue 1
378
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lerch-harmonic numbers related to Lerch transcendent

ORCID Icon, , &
Pages 315-323 | Received 19 Jul 2023, Accepted 12 Nov 2023, Published online: 12 Dec 2023

References

  • T. Kim and D.S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers. Adv Appl Math. 148 (2023). Paper No. 102535. doi:10.1016/j.aam.2023.102535.
  • T. Kim and D.S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys 30 (1) (2023), pp. 62–75. doi:10.1134/S1061920823010041.
  • D.S. Kim, H. Kim, and T. Kim, Some identities on generalized harmonic numbers and generalized harmonic functions. Demonstr. Math. 56 (1) (2023). Paper No. 20220229. doi:10.1515/dema-2022-0229.
  • T. Kim, D.S. Kim, H. Lee, and J. Kwon, On some summation formulas, Demonstr. Math 55 (1) (2022), pp. 1–7. doi:10.1515/dema-2022-0003.
  • L.V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., McGraw-Hill, New York, 1979.
  • G.E. Andrews, R. Askey, and R. Roy. Special Functions, Encyclopedia of Mathematics and Its Applications. Vol. 71. Cambridge: Cambridge University Press, 1999.
  • M.S. Aydin, M. Acikgoz, and S. Araci, A new construction on the degenerate Hurwitz-zeta function associated with certain applications, Proc. Jangjeon Math. Soc 25 (2022), pp. 195–203.
  • A.A. Aygunes and Y. Simsek, Unification of multiple Lerch-zeta type functions, Adv. Stud. Contemp. Math. (Kyungshang) 21 (2011), pp. 367–373.
  • N. Bhandari, Infinite series associated with the ratio and product of central binomial coefficients, J. Integer Seq 25 (2022), Art. 22.6.5.
  • K.N. Boyadzhiev, Infinite products, series with logarithms, and series with zeta values, Bull. Math. Anal. Appl 15 (2023), pp. 1–6.
  • L. Carlitz and H.W. Gould, Remarks on MacMahon’s identity for sums of cubes of binomial coefficients, Ars. Combin. 85 (2007), pp. 221–224.
  • L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, revised and enlarged ed., D. Reidel, Dordrecht, 1974.
  • D.H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (7) (1985), pp. 449–457. doi:10.1080/00029890.1985.11971651.
  • S. Roman, The Umbral calculus, Pure and Applied Mathematics, 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.
  • B. Simon, Basic Complex Analysis (A Comprehensive Course in Analysis), Part 2A, American Mathematical Society, Providence, RI, 2015.
  • E.T. Whittaker and G.N. Watson, A Course of Modern Analysis-An Introduction to the General Theory of Infinite Processes and of Analytic Functions with an Account of the Principal Transcendental Functions, Cambridge University Press, Cambridge, 2021.
  • J. Choi and H.M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math Comput Model 54 (9–10) (2011), pp. 2220–2234. doi:10.1016/j.mcm.2011.05.032.
  • Y. Simsek, Some classes of finite sums related to the generalized harmonic functions and special numbers and polynomials, Montes Taurus J. Pure Appl. Math 4 (2022), pp. 61–79.
  • D.F. Connon .Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. I. (2008). arXiv: 0710.4022.
  • D.F. Connon . Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. II(a). (2008). arXiv: 0710.4023.
  • D.F. Connon .Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. II(b). (2008). arXiv: 0710.4024.
  • D.F. Connon . Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. III. (2008). arXiv: 0710.4025.
  • D.F. Connon, Some infinite series involving the Riemann zeta function, Int. J. Math. Comput. Sci 7 (2012), pp. 11–83.
  • J. Sondow, Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series, Proc. Amer. Math. Soc 120 (2) (1994), pp. 421–424. doi:10.1090/S0002-9939-1994-1172954-7.
  • I. Kucukoglu, Y. Simsek, and H.M. Srivastava, A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials, Quaest. Math. 42 (4) (2019), pp. 465–478. doi:10.2989/16073606.2018.1459925.
  • Y. Simsek, Interpolation functions for New classes special numbers and polynomials via applications of p-adic integrals and derivative Operator, Montes Taurus J. Pure Appl. Math 3 (2021), pp. 38–61.
  • I. Kucukoglu and Y. Simsek, Observations on identities and relations for interpolation functions and special numbers, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), pp. 41–56.