Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
230
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The bass diffusion model: agent-based implementation on arbitrary networks

& ORCID Icon
Pages 364-384 | Received 28 Feb 2024, Accepted 28 Apr 2024, Published online: 19 May 2024

References

  • Amaral LAN, Scala A, Barthelemy M, Stanley HE. 2000. Classes of small-world networks. Proc Natl Acad Sci USA. 97(21):11149–11152. doi: 10.1073/pnas.200327197.
  • Bakshy E and Wilensky U. 2007. Netlogo-mathematica link. Center for connected learning and computer-based modeling, Evanston (IL): Northwestern University; [accessed 24 Oct 2011]. http://ccl.northwestern.edu/netlogo/mathematica.html
  • Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. 2013. The diffusion of microfinance. Science. 341(6144):1236498. doi: 10.1126/science.1236498.
  • Banisch S, Lima R, Araújo T. 2012. Agent based models and opinion dynamics as Markov chains. Soc Networks. 34(4):549–561. doi: 10.1016/j.socnet.2012.06.001.
  • Barbuto A, Lopolito A, Santeramo FG. 2019. Improving diffusion in agriculture: an agent-based model to find the predictors for efficient early adopters. Agric Econ. 7(1):1–12. doi: 10.1186/s40100-019-0121-0.
  • Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. 2004. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett. 92(17):178701. doi: 10.1103/PhysRevLett.92.178701.
  • Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. 2005. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J Theor Biol. 235(2):275–288. doi: 10.1016/j.jtbi.2005.01.011.
  • Bass FM. 1969. A new product growth for model consumer durables. Manage Sci. 15(5):215–227. doi: 10.1287/mnsc.15.5.215.
  • Bertotti ML, Brunner J, Modanese G. 2016a. The bass diffusion model on networks with correlations and inhomogeneous advertising. Chaos, Solitons Fractals. 90:55–63. doi: 10.1016/j.chaos.2016.02.039.
  • Bertotti ML, Brunner J, Modanese G. 2016b. Innovation diffusion equations on correlated scale-free networks. Phys Lett A. 380(33):2475–2479. doi: 10.1016/j.physleta.2016.06.003.
  • Bertotti ML, Modanese G 2019. The bass diffusion model on finite barabasi-albert networks. Complexity. 2019:6352657. doi: 10.1155/2019/6352657.
  • Bertotti ML, Modanese G. 2020. Network rewiring in the r-K plane. Entropy. 22(6):653. doi: 10.3390/e22060653.
  • Boguñá M, Pastor-Satorras R2002. Epidemic spreading in correlated complex networks. Phys Rev E. 66(4):047104. doi: 10.1103/PhysRevE.66.047104.
  • Boguñá M, Pastor-Satorras R, Vespignani A. 2003a. Absence of epidemic threshold in scalefree networks with degree correlations. Phys Rev Lett. 90(2):028701. doi: 10.1103/PhysRevLett.90.028701.
  • Boguñá M, Pastor-Satorras R, Vespignani A. 2003b. Epidemic spreading in complex networks with degree correlations. In: Statistical mechanics of complex networks. Berlin/Heidelberg: Springer-Verlag; p. 127–147.
  • Boguñá M, Pastor-Satorras R, Vespignani A. 2004. Cut-offs and finite size effects in scale-free networks. Eur Phys J B. 38(2):205–209. doi: 10.1140/epjb/e2004-00038-8.
  • Bohlmann JD, Calantone RJ, Zhao M. 2010. The effects of market network heterogeneity on innovation diffusion: an agent-based modeling approach. J Prod Innovation Manage. 27(5):741–760. doi: 10.1111/j.1540-5885.2010.00748.x.
  • Centola D, Eguíluz VM, Macy MW. 2007. Cascade dynamics of complex propagation. Physica A. 374(1):449–456. doi: 10.1016/j.physa.2006.06.018.
  • Dawid H. 2006. Agent-based models of innovation and technological change. Handb Comput Econ. 2:1235–1272.
  • Delre SA, Jager W, Bijmolt TH, Janssen MA. 2007. Targeting and timing promotional activities: an agent-based model for the takeoff of new products. J Bus Res. 60(8):826–835. doi: 10.1016/j.jbusres.2007.02.002.
  • Delre SA, Jager W, Bijmolt TH, Janssen MA. 2010. Will it spread or not? the effects of social influences and network topology on innovation diffusion. J Prod Innovation Manage. 27(2):267–282. doi: 10.1111/j.1540-5885.2010.00714.x.
  • Delre SA, Jager W, Janssen MA. 2007. Diffusion dynamics in small-world networks with heterogeneous consumers. Comput Math Organ Th. 13(2):185–202. doi: 10.1007/s10588-006-9007-2.
  • Di Lucchio L, Modanese G. 2024. Generation of scale-free assortative networks via newman rewiring for simulation of diffusion phenomena. Stats. 7(1):220–234. doi: 10.3390/stats7010014.
  • Garcia R. 2005. Uses of agent-based modeling in innovation/new product development research. J Prod Innovation Manage. 22(5):380–398. doi: 10.1111/j.1540-5885.2005.00136.x.
  • Guidolin M. 2023. Innovation diffusion models: theory and practice. Hoboken, New Jersey: John Wiley & Sons.
  • Hagberg A, Swart P, and Chult DS. 2008. Exploring network structure, dynamics, and function using NetworkX. Tech. rep., Los Alamos (NM) (United States):Los Alamos National Lab.(LANL).
  • Hardiman SJ, Richmond P, Hutzler S. 2009. Calculating statistics of complex networks through random walks with an application to the on-line social network Bebo. Eur Phys J B. 71(4):611–622. doi: 10.1140/epjb/e2009-00292-2.
  • Henry AD, Brugger HI. 2017. Agent-based explorations of environmental consumption in segregated networks. In: Social Systems Engineering: The Design of Complexity. John Wiley and Sons; p. 197–214.
  • Holme P, Zhao J. 2007. Exploring the assortativity-clustering space of a network’s degree sequence. Phys Rev E. 75(4):046111. doi: 10.1103/PhysRevE.75.046111.
  • Jaxa-Rozen M, Kwakkel JH. 2018. Pynetlogo: linking NetLogo with Python. J Artif Soc Soc Simul. 21(2). doi: 10.18564/jasss.3668.
  • Jiang Z, Jain DC. 2012. A generalized Norton–bass model for multigeneration diffusion. Manage Sci. 58(10):1887–1897. doi: 10.1287/mnsc.1120.1529.
  • Kiesling E, Günther M, Stummer C, Wakolbinger LM. 2012. Agent-based simulation of innovation diffusion: a review. Cent Eur J Oper Res. 20(2):183–230. doi: 10.1007/s10100-011-0210-y.
  • Kotthoff F, Hamacher T. 2022. Calibrating agent-based models of innovation diffusion with gradients. J Artif Soc Soc Simul. 25(3). doi: 10.18564/jasss.4861.
  • Mueller M, Ramkumar S. 2023. Signed networks-the role of negative links for the diffusion of innovation. Technol Forecast Soc. 192:122575. doi: 10.1016/j.techfore.2023.122575.
  • Norton JA, Bass FM. 1987. A diffusion theory model of adoption and substitution for successive generations of high-technology products. Manage Sci. 33(9):1069–1086. doi: 10.1287/mnsc.33.9.1069.
  • Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. 2015. Epidemic processes in complex networks. Rev Mod Phys. 87(3):925. doi: 10.1103/RevModPhys.87.925.
  • Pastor-Satorras A, Vespignani R. 2001. Epidemic dynamics and endemic states in complex networks. Phys Rev E. 63(6):066117. doi: 10.1103/PhysRevE.63.066117.
  • Pastor-Satorras A, Vespignani R. 2002. Epidemic dynamics in finite size scale-free networks. Phys Rev E. 65(3):035108. doi: 10.1103/PhysRevE.65.035108.
  • Pastor-Satorras A, Vespignani R. 2004. Evolution and structure of the internet: a statistical physics approach. Cambridge, UK: Cambridge University Press.
  • Peres R, Muller E, Mahajan V. 2010. Innovation diffusion and new product growth models: a critical review and research directions. Int J Res Mark. 27(2):91–106. doi: 10.1016/j.ijresmar.2009.12.012.
  • Platt EL. 2019. Network science with python and NetworkX quick start guide: explore and visualize network data effectively. Birmingham: Packt Publishing Ltd.
  • Ramkumar S, Mueller M, Pyka A, Squazzoni F. 2022. Diffusion of eco-innovation through inter-firm network targeting: an agent-based model. J Cleaner Prod. 335:130298. doi: 10.1016/j.jclepro.2021.130298.
  • Rand W, Stummer C. 2021. Agent-based modeling of new product market diffusion: an overview of strengths and criticisms. Ann Oper Res. 305(1):425–447. doi: 10.1007/s10479-021-03944-1.
  • Rogers E. 2010. Diffusion of innovations. New York, USA: Simon and Schuster.
  • Sahneh FD, Scoglio C, Van Mieghem P. 2013. Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans Netw. 21(5):1609–1620. doi: 10.1109/TNET.2013.2239658.
  • Schramm ME, Trainor KJ, Shanker M, Hu MY. 2010. An agent-based diffusion model with consumer and brand agents. Decis Support Syst. 50(1):234–242. doi: 10.1016/j.dss.2010.08.004.
  • Sklar E. 2007. Netlogo, a multi-agent simulation environment. Artif Life. 13(3):303–311. doi: 10.1162/artl.2007.13.3.303.
  • Son S, Choi EJ, Lee SH. 2023. Revisiting small-world network models: exploring technical realizations and the equivalence of the Newman–watts and Harary models. J Korean Phys Soc. 83(11):879–889. doi: 10.1007/s40042-023-00921-8.
  • Tam WM, Lau FC, and Tse CK. 2008. Construction of scale-free networks with adjustable clustering. Proceedings of 2008 International Symposium on Nonlinear Theory and its Applications; Sep 7–10; NOLTA’08, Budapest, Hungary. p. 257–260.
  • Thiele JC, Kurth W, Grimm V. 2012. Agent-based modelling: tools for linking NetLogo and R. J Artif Soc Soc Simul. 15(3):8. doi: 10.18564/jasss.2018.
  • Tur EM, Zeppini P, Frenken K. 2018. Diffusion with social reinforcement: the role of individual preferences. Phys Rev E. 97(2):022302. doi: 10.1103/PhysRevE.97.022302.
  • Van Eck PS, Jager W, Leeflang PS. 2011. Opinion leaders’ role in innovation diffusion: a simulation study. J Prod Innovation Manage. 28(2):187–203. doi: 10.1111/j.1540-5885.2011.00791.x.
  • Watts DJ, Dodds PS. 2007. Influentials, networks, and public opinion formation. J Consum Res. 34(4):441–458. doi: 10.1086/518527.