Publication Cover
Spatial Cognition & Computation
An Interdisciplinary Journal
Volume 19, 2019 - Issue 2
465
Views
17
CrossRef citations to date
0
Altmetric
Articles

Which way is the bookstore? A closer look at the judgments of relative directions task

ORCID Icon & ORCID Icon

References

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01
  • Bryant, K. J. (1982). Personality correlates of sense of direction and geographic orientation. Journal of Personality and Social Psychology, 43(6), 1318–1324.
  • Bryant, K. J. (1984). Methodological convergence as an issue within environmental cognition research. Journal of Environmental Psychology, 4(1), 43–60. doi:10.1016/S0272-4944(84)80018-3
  • Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E. L., & Kahana, M. J. (2003). Human θ oscillations related to sensorimotor integration and spatial learning. The Journal of Neuroscience, 23(11), 4726–4736.
  • Carbon, -C.-C. (2013). BiDimRegression: Bidimensional regression modeling using R. Journal of Statistical Software, Code Snippets, 52(1), 1–11. doi:10.18637/jss.v052.c01
  • Carpenter, S. K., & Kelly, J. W. (2012). Tests enhance retention and transfer of spatial learning. Psychonomic Bulletin & Review, 19(3), 443–448. doi:10.3758/s13423-012-0221-2
  • Carpenter, S. K., & Pashler, H. (2007). Testing beyond words: Using tests to enhance visuospatial map learning. Psychonomic Bulletin & Review, 14(3), 474–478. doi:10.3758/BF03194092
  • Chen, Y., Namburi, P., Elliott, L. T., Heinzle, J., Soon, C. S., Chee, M. W. L., & Haynes, J.-D. (2011). Cortical surface-based searchlight decoding. NeuroImage, 56(2), 582–592. doi:10.1016/j.neuroimage.2010.07.035
  • Deuker, L., Bellmund, J. L., Schröder, T. N., & Doeller, C. F. (2016). An event map of memory space in the hippocampus. eLife, 5, e16534. doi:10.7554/eLife.16534
  • Dhindsa, K., Drobinin, V., King, J., Hall, G. B., Burgess, N., & Becker, S. (2014). Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Frontiers in Human Neuroscience, 8, 709. doi:10.3389/fnhum.2014.00709
  • Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. New York, NY: Teachers College.
  • Ekstrom, A. D., Arnold, A. E. G. F., & Iaria, G. (2014). A critical review of the allocentric spatial representation and its neural underpinnings: Toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803. doi:10.3389/fnhum.2014.00803
  • Ekstrom, A. D., Huffman, D. J., & Starrett, M. (2017). Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, 118(6), 3328–3344. doi:10.1152/jn.00531.2017
  • Ernst, M. D. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19(4), 676–685. doi:10.1214/088342304000000396
  • Etzel, J. (2015). MVPA permutation schemes: Permutation testing for the group level. Pattern Recognition in NeuroImaging (PRNI), 2015 International Workshop on (pp. 65–68). doi:10.1109/PRNI.2015.29
  • Friedman, A., & Bernd, K. (2003). Bidimensional regression: Assessing the configural similarity and accuracy of cognitive maps and other two-dimensional data sets. Psychological Methods, 8(4), 468–491. doi:10.1037/1082-989X.8.4.468
  • Hargreaves, E., Mattfeld, A., Stark, C., & Suzuki, W. (2012). Conserved fMRI and LFP signals during new associative learning in the human and macaque monkey medial temporal lobe. Neuron, 74(4), 743–752. doi:10.1016/j.neuron.2012.03.029
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. doi:10.1016/j.intell.2005.09.005
  • Hintzman, D. L. (1976). Repetition and memory. In G. H. Bower (Ed.), (Vol. 10, pp. 47–91). Academic Press. doi:10.1016/S0079-7421(08)60464-8
  • Hintzman, D. L., O’Dell, C. S., & Arndt, D. R. (1981). Orientation in cognitive maps. Cognitive Psychology, 13(2), 149–206.
  • Huffman, D. J., & Stark, C. E. (2014). Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus. Hippocampus, 24(11), 1394–1403. doi:10.1002/hipo.22321
  • Huffman, D. J., & Stark, C. E. (2017). The influence of low-level stimulus features on the representation of contexts, items, and their mnemonic associations. NeuroImage, 155, 513–529. doi:10.1016/j.neuroimage.2017.04.019
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi:10.1016/j.cogpsych.2005.08.003
  • Kelly, J. W., Avraamides, M. N., & Loomis, J. M. (2007). Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(6), 1092–1107. doi:10.1037/0278-7393.33.6.1092
  • Komorowski, R. W., Manns, J. R., & Eichenbaum, H. (2009). Robust conjunctive item–Place coding by hippocampal neurons parallels learning what happens where. Journal of Neuroscience, 29(31), 9918–9929. doi:10.1523/JNEUROSCI.1378-09.2009
  • Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: Human Perception and Performance, 3(4), 590–598.
  • Labate, E., Pazzaglia, F., & Hegarty, M. (2014). What working memory subcomponents are needed in the acquisition of survey knowledge? Evidence from direction estimation and shortcut tasks. Journal of Environmental Psychology, 37, 73–79. doi:10.1016/j.jenvp.2013.11.007
  • Liang, M., Mouraux, A., Hu, L., & Iannetti, G. D. (2013). Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nature Communications, 4, 1979. doi:10.1038/ncomms2979
  • MacKay, D. B. (1976). The effect of spatial stimuli on the estimation of cognitive maps. Geographical Analysis, 8(4), 439–452. doi:10.1111/j.1538-4632.1976.tb00550.x
  • Marchette, S. A., & Shelton, A. L. (2010). Object properties and frame of reference in spatial memory representations. Spatial Cognition and Computation, 10(1), 1–27. doi:10.1080/13875860903509406
  • Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2014). Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe. Nature Neuroscience, 17, 1598–1606. doi:10.1038/nn.3834
  • Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2015). Outside looking in: Landmark generalization in the human navigational system. Journal of Neuroscience, 35(44), 14896–14908. doi:10.1523/JNEUROSCI.2270-15.2015
  • Marchette, S. A., Yerramsetti, A., Burns, T. J., & Shelton, A. L. (2011). Spatial memory in the real world: Long-term representations of everyday environments. Memory & Cognition, 39(8), 1401–1408. doi:10.3758/s13421-011-0108-x
  • May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.
  • McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review, 10(3), 589–595. doi:10.3758/BF03196519
  • Montello, D. R., Richardson, A. E., Hegarty, M., & Provenza, M. (1999). A comparison of methods for estimating directions in egocentric space. Perception, 28(8), 981–1000. doi:10.1068/p280981
  • Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16(4), 406–419. doi:10.1037/a0024377
  • Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 142–157. doi:10.1037/0278-7393.30.1.142
  • Mou, W., Zhao, M., & McNamara, T. P. (2007). Layout geometry in the selection of intrinsic frames of reference from multiple viewpoints. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(1), 145–154. doi:10.1037/0278-7393.33.1.145
  • Newman, E. L., Caplan, J. B., Kirschen, M. P., Korolev, I. O., Sekuler, R., & Kahana, M. J. (2007). Learning your way around town: How virtual taxicab drivers learn to use both layout and landmark information. Cognition, 104(2), 231–253. doi:10.1016/j.cognition.2006.05.013
  • R Core Team. (2016). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org
  • Richardson, G. D. (1981). Comparing two cognitive mapping methodologies. Area, 13(4), 325–331. doi:10.2307/20001754
  • Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1157–1165.
  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. doi:10.3758/PBR.16.2.225
  • Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528. doi:10.1002/hipo.22111
  • Shelton, A. L., & Marchette, S. A. (2010). Where do you think you are? Effects of conceptual current position on spatial memory performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 686–698. doi:10.1037/a0018713
  • Shelton, A. L., & McNamara, T. P. (2001). Visual memories from nonvisual experiences. Psychological Science, 12(4), 343–347. doi:10.1111/1467-9280.00363
  • Shelton, A. L., & McNamara, T. P. (2004a). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 158–170.
  • Shelton, A. L., & McNamara, T. P. (2004b). Spatial memory and perspective taking. Memory & Cognition, 32(3), 416–426. doi:10.3758/BF03195835
  • Sholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 615–628.
  • Silver, N. C., & Dunlap, W. P. (1987). Averaging correlation coefficients: Should Fisher’s z transformation be used? Journal of Applied Psychology, 72(1), 146–148. doi:10.1037/0021-9010.72.1.146
  • Starrett, M. J., Stokes, J. D., Huffman, D. J., Ferrer, E., & Ekstrom, A. D. (2018). Learning-dependent evolution of spatial representations in large-scale virtual environments. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:10.1037/xlm0000597
  • Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. NeuroImage, 65, 69–82. doi:10.1016/j.neuroimage.2012.09.063
  • Stevens, C. A., & Carlson, R. A. (2016). Are you sure the library is that way? Metacognitive monitoring of spatial judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(7), 1034–1049. doi:10.1037/xlm0000229
  • Stokes, J., Kyle, C., & Ekstrom, A. D. (2015). Complementary roles of human hippocampal subfields in differentiation and integration of spatial context. Journal of Cognitive Neuroscience, 27(3), 546–559. doi:10.1162/jocn_a_00736
  • Street, W. N., & Wang, R. F. (2016). Examining reference frame interaction in spatial memory using a distribution analysis. Psychonomic Bulletin & Review, 23(1), 239–245. doi:10.3758/s13423-015-0871-y
  • Suzuki, W. A., & Brown, E. N. (2005). Behavioral and neurophysiological analyses of dynamic learning processes. Behavioral and Cognitive Neuroscience Reviews, 4(2), 67–95. doi:10.1177/1534582305280030
  • Tlauka, M., Carter, P., Mahlberg, T., & Wilson, P. N. (2011). The first-perspective alignment effect: The role of environmental complexity and familiarity with surroundings. The Quarterly Journal of Experimental Psychology, 64(11), 2236–2250. doi:10.1080/17470218.2011.586710
  • Tobler, W. R. (1994). Bidimensional regression. Geographical Analysis, 26(3), 187–212. doi:10.1111/j.1538-4632.1994.tb00320.x
  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. doi:10.1037/h0020071
  • Vass, L. K., & Epstein, R. A. (2017). Common neural representations for visually guided reorientation and spatial imagery. Cerebral Cortex, 27(2), 1457–1471. doi:10.1093/cercor/bhv343
  • Viček, K., & Laczó, J. (2014). Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Frontiers in Behavioral Neuroscience, 8, 6.
  • Waller, D., Beall, A. C., & Loomis, J. M. (2004). Using virtual environments to assess directional knowledge. Journal of Environmental Psychology, 24(1), 105–116. doi:10.1016/S0272-4944(03)00051-3
  • Waller, D., & Haun, D. B. (2003). Scaling techniques for modeling directional knowledge. Behavior Research Methods, Instruments & Computers, 35(2), 285–293. doi:10.3758/BF03202554
  • Waller, D., & Hodgson, E. (2006). Transient and enduring spatial representations under disorientation and self-rotation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 867–882. doi:10.1037/0278-7393.32.4.867
  • Walther, D. B., Beck, D. M., & Fei-Fei, L. (2012). To err is human: Correlating fMRIdecoding and behavioral errors to probe the neural representationof natural scene categories. In N. Kriegeskorte & G. Kreiman (Eds.), Visual population codes – Towards a common multivariate framework for cell recordings and functional imaging. (pp. 391–415). Cambridge, MA: MIT Press.
  • Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250.
  • Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376. doi:10.1016/S1364-6613(02)01961-7
  • Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669–682. doi:10.1037/a0035261
  • Werner, S., & Schmidt, K. (1999). Environmental reference systems for large-scale spaces. Spatial Cognition and Computation, 1(4), 447–473. doi:10.1023/A:1010095831166
  • Westfall, J., Nichols, T., & Yarkoni, T. (2016). Fixing the stimulus-as-fixed-effect fallacy in task fmri. Wellcome Open Research, 1(23). doi:10.12688/wellcomeopenres.10298.2
  • Wolbers, T., & Büchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340. doi:10.1523/JNEUROSCI.4705-04.2005
  • Zhang, H., Copara, M., & Ekstrom, A. D. (2012). Differential recruitment of brain networks following route and cartographic map learning of spatial environments. PLOS ONE, 7(9), 1–10. doi:10.1371/journal.pone.0044886
  • Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different “routes” to a cognitive map: Dissociable forms of spatial knowledge derived from route and cartographic map learning. Memory & Cognition, 42(7), 1106–1117. doi:10.3758/s13421-014-0418-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.