1,583
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Supporting spatial orientation during route following through dynamic maps with off-screen landmark persistence

, &

References

  • Adams, E. (2014). Fundamentals of game design (3rd ed.). Indianapolis: New Riders.
  • Anacta, V. J. A., Schwering, A., Li, R., & Muenzer, S. (2017). Orientation information in wayfinding instructions: evidences from human verbal and visual instructions. Geo Journal, 82(3), 567–583.
  • Baudisch, P., Good, N., Bellotti, V., & Schraedley, P. (2002) Keeping things in context: A comparative evaluation of focus plus context screens, overviews, and zooming. Proc. Conference on Human Factors in Computing Systems (CHI 2002), ACM Press, pp. 259–266.
  • Baudisch, P., & Rosenholtz, R. (2003). Halo: a technique for visualizing off-screen objects. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 481–488).
  • Brown, B., & Perry, M. (2002). Of maps and guidebooks: Designing geographical technologies. Proceedings of the 4th conference on Designing interactive systems: processes, practices, methods, and techniques, London, UK, pp. 246–254. 25 – 28 June.
  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. doi:10.1016/j.tics.2006.10.005
  • Burigat, S., & Chittaro, L. (2011). Visualizing references to off-screen content on mobile devices: A comparison of Arrows, Wedge, and overview+detail. Interacting with Computers, 23(2), 156–166. doi:10.1016/j.intcom.2011.02.005
  • Burigat, S., Chittaro, L., & Gabrielli, S. (2008). Navigation techniques for small-screen devices: An evaluation on maps and web pages. International Journal of Human-Computer Studies, 66(2), 78–97. doi:10.1016/j.ijhcs.2007.08.006
  • Burnett, G. (2000). ‘Turn right at the traffic lights’: The requirement for landmarks in vehicle navigation systems. The Journal of Navigation, 53(3), 499–510. doi:10.1017/S0373463300001028
  • Burnett, G., Smith, D., & May, A. (2001). Supporting the navigation task: Characteristics of ‘good’ landmarks. Contemporary Ergonomics, 1, 441–446.
  • Chen, C.-H., & Li, X. (2020). Spatial knowledge acquisition with mobile maps: Effects of map size on users’ wayfinding performance with interactive interfaces. ISPRS International Journal of Geo-Information, 9(11), 614. doi:10.3390/ijgi9110614
  • Cockburn, A., Karlson, A., & Bederson, B. B. (2009). A review of overview+ detail, zooming, and focus+ context interfaces. ACM Computing Surveys (CSUR), 41(1), 1–31.
  • Coluccia, E., Iosue, G., & Brandimonte, M. A. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27(2), 135–144. doi:10.1016/j.jenvp.2006.12.005
  • Davies, C., & Peebles, D. (2010). Spaces or scenes: Map-based orientation in urban environments. Spatial Cognition and Computation, 10(2–3), 135–156. doi:10.1080/13875861003759289
  • Dillemuth, J. A. (2009). Navigation tasks with small-display maps: The sum of the parts does not equal the whole. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 187–200. doi:10.3138/carto.44.3.187
  • Edler, D., Keil, J., Wiedenlübbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019). Immersive VR experience of redeveloped post-industrial sites: The example of “Zeche Holland” in Bochum-Wattenscheid. KN-Journal of Cartography and Geographic Information, 69(4), 267–284.
  • Forrest, D. (1998). On the design of point symbols for tourist maps: Enclosed or not enclosed is not the question! The Cartographic Journal, 35(1), 79–81. doi:10.1179/caj.1998.35.1.79
  • Golledge, R. G. (1999). Human wayfinding and cognitive maps. In Wayfinding behavior: Cognitive mapping and other spatial processes (pp. 5–45). Baltimore, MD: Johns Hopkins Press.
  • Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P., 2008. Wedge: Clutter-free visualization of off-screen locations. In: Proc. Conference on Human factors in Computing Systems (CHI ’08), ACM Press, pp. 787–796.
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. doi:10.1016/j.intell.2005.09.005
  • Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425–447. doi:10.1016/S0160-2896(02)00116-2
  • Hornbaek, K., Bederson, B., & Plaisant, C. (2002). Navigation patterns and usability of zoomable user interfaces with and without an overview. ACM Transactions on Computer-Human Interaction, 9(4), 362–389. doi:10.1145/586081.586086
  • Keil, J., Edler, D., Dickmann, F., & Kuchinke, L. (2019). Meaningfulness of landmark pictograms reduces visual salience and recognition performance. Applied Ergonomics, 75, 214–220. doi:10.1016/j.apergo.2018.10.008
  • Keil, J., Edler, D., Kuchinke, L., & Dickmann, F. (2020). Effects of visual map complexity on the attentional processing of landmarks. Plos one, 15(3), e0229575. doi:10.1371/journal.pone.0229575
  • Keil, J., Mocnik, F. B., Edler, D., Dickmann, F., & Kuchinke, L. (2018). Reduction of map information regulates visual attention without affecting route recognition performance. ISPRS International Journal of Geo-information, 7(12), 1–13. doi:10.3390/ijgi7120469
  • Kiefer, P., Giannopoulos, I., & Raubal, M. (2014). Where am I? investigating map matching during selflocalization with mobile eye tracking in an urban environment. Transactions in GIS, 18(5), 660–686.
  • Lakens, D., Adolfi, F.G., Albers, C.J., Anvari, F., Apps, M.A., Argamon, S.E., Baguley, T., Becker, R.B., Benning, S.D., Bradford, D.E. and Buchanan, E.M. (2018). Justify your alpha.Nature Human Behaviour, 2(3), 168–171.
  • Liverence, B. M., & Scholl, B. J. (2015). Object persistence enhances spatial navigation: A case study in smartphone vision science. Psychological Science, 26(7), 955–963. doi:10.1177/0956797614547705
  • Löwen, H., Krukar, J., & Schwering, A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149. doi:10.3390/ijgi8030149
  • MacEachren, A. M. (2004). How maps work: Representation, visualisation and design. New York, USA: The Guilford Press.
  • May, A. J., Ross, T., Bayer, S. H., & Tarkiainen, M. J. (2003). Pedestrian navigation aids: Information requirements and design implications. Personal and Ubiquitous Computing, 7(6), 331–338. doi:10.1007/s00779-003-0248-5
  • Peebles, D., Davies, C., & Mora, R., 2007. Effects of geometry, landmarks and orientation strategies in the ‘drop-off’ orientation task. Proceedings of the 8th International Conference on Spatial Information Theory, COSIT’07, Berlin, Heidelberg, Springer-Verlag, pp. 390–405.
  • Pinelle, D., Wong, N., & Stach, T. (2008). Heuristic evaluation for games: Usability principles for video game design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, pp. 1453–1462, 05 – 10 April.
  • Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., & Guptill, S. C. (1995). Elements of Cartography (6th ed.). New Jersey, USA: John Wiley and Sons inc.
  • Rogers, Y. (2011). Interaction design gone wild: Striving for wild theory. Interactions, 18(4), 58–62. doi:10.1145/1978822.1978834
  • Schmid, F., Richter, K. F., & Peters, D. (2010). Route aware maps: Multigranular wayfinding assistance. Spatial Cognition and Computation, 10(2–3), 184–206. doi:10.1080/13875861003592748
  • Schwering, A., Li, R., Schwering, A., Krukar, J., Li, R., Anacta, V. J., & Fuest, S. (2017). Wayfinding Through Orientation. Spatial Cognition and Computation, 17(4), 273–303. doi:10.1080/13875868.2017.1322597
  • Smith, A. D. (2009). Beyond SatNav: Using the global positioning system as a tool for the behavioural sciences. School Science Review, 90(333), 99–103.
  • Snowdon, C., & Kray, C. (2009). Exploring the use of landmarks for mobile navigation support in natural environments. Proceedings of the 11th international conference on human-computer interaction with mobile devices and services, Bonn, Germany, 15 – 18 September.
  • Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence: Teleoperators & Virtual Environments, 9(1), 69–83. doi:10.1162/105474600566628
  • Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100–110. doi:10.1016/j.compenvurbsys.2009.01.004
  • Yamamoto, N., & DeGirolamo, G. J. (2012). Differential effects of aging on spatial learning through exploratory navigation and map reading. Frontiers in Aging Neuroscience, 4, 14. doi:10.3389/fnagi.2012.00014
  • Zagata, K., Gulij, J., Halik, L., & Medynska-Gulij, B. (2021). Mini-map for gamers who walk and teleport in a virtual stronghold. ISPRS International Journal of Geo-Information, 10(2), 96. doi:10.3390/ijgi10020096