2,941
Views
4
CrossRef citations to date
0
Altmetric
Review

Designing mobile spatial navigation systems from the user’s perspective: an interdisciplinary review

, , & ORCID Icon

References

  • Ahmadpoor, N., & Shahab, S. (2019). Spatial knowledge acquisition in the process of navigation: A review. Current Urban Studies, 7(1), 1–19. doi:10.4236/cus.2019.71001
  • Ahmadpoor, N., & Smith, A. D. (2020). Spatial knowledge acquisition and mobile maps: The role of environmental legibility. Cities, 101, 102700. doi:10.1016/j.cities.2020.102700
  • Ahmadpoor, N., Smith, A. D., & Heath, T. (2021). Rethinking legibility in the era of digital mobile maps: an empirical study. Journal of Urban Design, 26(3), 296–318. doi:10.1080/13574809.2020.1777847
  • Ahmetovic, D., Gleason, C., Ruan, C., Kitani, K., Takagi, H., & Asakawa, C. (2016). NavCog: A navigational cognitive assistant for the blind. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 90–99. 10.1145/2935334.2935361
  • Anacta, V. J. A., Schwering, A., Li, R., & Muenzer, S. (2017). Orientation information in wayfinding instructions: evidences from human verbal and visual instructions. GeoJournal, 82(3), 567–583. doi:10.1007/s10708-016-9703-5
  • Arleo, A., & Rondi-Reig, L. (2007). Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. Journal of Integrative Neuroscience, 6(3), 327–366. doi:10.1142/S0219635207001593
  • Auvray, M., Hanneton, S., & O’Regan, J. K. (2007). Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘The Voice. Perception, 36(3), 416–430. doi:10.1068/p5631
  • Balaban, C. Z., Roser, F., & Hamburger, K. (2014). The effect of emotions and emotionally laden landmarks on wayfinding. In Proceedings of the Annual Meeting of the Cognitive Science Society July 23-26 Quebec City, Canada, 36 2 September 2021. Retrieved from https://escholarship.org/uc/item/4p60r568
  • Barhorst-Cates, E. M., Rand, K. M., & Creem-Regehr, S. H. (2017). Let me be your guide: physical guidance improves spatial learning for older adults with simulated low vision. Experimental Brain Research, 235(11), 3307–3317. doi:10.1007/s00221-017-5063-8
  • Basiri, A., Lohan, E. S., Moore, T., Winstanley, A., Peltola, P., Hill, C., … Silva, P. (2017). Indoor location based services challenges, requirements and usability of current solutions. Computer Science Review, 24, 1–12. doi:10.1016/j.cosrev.2017.03.002
  • Baudisch, P., & Rosenholtz, R. (2003). Halo: A technique for visualizing off-screen locations. New Horizons, 5, 8.
  • Berman, J. (2018). Marco Vignelli–inspired New York subway map [svg image 5 May 2020]. https://commons.wikimedia.org/wiki/File:NYC_subway-4D.svg
  • Bienk, S., Kattenbeck, M., Ludwig, B., Müller, M., & Ohm, C. (2013). I want to view it my way: Interfaces to mobile maps should adapt to the user’s orientation skills. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, 34, pp. 1–9. 10.1145/2541831.2541841
  • Brock, A. M., Froehlich, J. E., Guerreiro, J., Tannert, B., Caspi, A., Schöning, J., & Landau, S. (2018). SIG: Making maps accessible and putting accessibility in maps. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, 1–4. 10.1145/3170427.3185373
  • Brock, A., Truillet, P., Oriola, B., & Jouffrais, C. (2010). Usage of multimodal maps for blind people: Why and how. In ACM International Conference on Interactive Tabletops and Surfaces, pp. 247–248. 10.1145/1936652.1936699.
  • Brock, A. M., Truillet, P., Oriola, B., Picard, D., & Jouffrais, C. (2015). Interactivity improves usability of geographic maps for visually impaired people. Human–Computer Interaction, 30(2), 156–194. doi:10.1080/07370024.2014.924412
  • Brügger, A., Richter, K.-F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: Principles and Implications, 4(1), 5. doi:10.1186/s41235-019-0156-5
  • Chrastil, E. R., Nicora, G. L., & Huang, A. (2019). Vision and proprioception make equal contributions to path integration in a novel homing task. Cognition, 192, 103998. doi:10.1016/j.cognition.2019.06.010
  • Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(5), 1520–1537. doi:10.1037/a0032382
  • Clemenson, G. D., Maselli, A., Fiannaca, A., Miller, A., & Gonzalez-Franco, M. (2021). Rethinking GPS navigation: Creating cognitive maps through auditory clues. Scientific Reports, 11(1), 7764. doi:10.1038/s41598-021-87148-4
  • Coughlan, G., Laczó, J., Hort, J., Minihane, A.-M., & Hornberger, M. (2018). Spatial navigation deficits: Overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews. Neurology, 14(8), 496–506. doi:10.1038/s41582-018-0031-x
  • Credé, S., Thrash, T., Hölscher, C., & Fabrikant, S. I. (2019). The acquisition of survey knowledge for local and global landmark configurations under time pressure. Spatial Cognition and Computation, 19(3), 190–219. doi:10.1080/13875868.2019.1569016
  • Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), 6310. doi:10.1038/s41598-020-62877-0
  • Delikostidis, I., Engel, J., Retsios, B., Van Elzakker, C. P., Kraak, M. J., & Döllner, J. (2013). Increasing the usability of pedestrian navigation interfaces by means of landmark visibility analysis. The Journal of Navigation, 66(4), 523–537. doi:10.1017/S0373463313000209
  • Delikostidis, I., van Elzakker, C. P. J. M., & Kraak, M.-J. (2016). Overcoming challenges in developing more usable pedestrian navigation systems. Cartography and Geographic Information Science, 43(3), 189–207. doi:10.1080/15230406.2015.1031180
  • Denis, M., Michon, P. E., & Tom, A. (2007). Assisting pedestrian wayfinding in urban settings: why references to landmarks are crucial in direction-giving. In G. L. Allen (Ed.), Applied spatial cognition: From research to cognitive technology (pp. 25–51). Hove, East Sussex, United Kingdom: Psychology Press.
  • Dillemuth, J. (2005). Map design evaluation for mobile display. Cartography and Geographic Information Science, 32(4), 285–301.
  • Dillemuth, J. A. (2009). Navigation tasks with small-display maps: the sum of the parts does not equal the whole. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 187–200. doi:10.3138/carto.44.3.187
  • Dubey, R. K., Thrash, T., Kapadia, M., Hoelscher, C., & Schinazi, V. R. (2019). Information theoretic model to simulate agent-signage interaction for wayfinding. Cognitive Computation, 13(1), 189–206. doi:10.1007/s12559-019-09689-1
  • Ducasse, J., Brock, A. M., & Jouffrais, C. (2018). Accessible interactive maps for visually impaired users. In E. Pissaloux & R. Velazquez (Eds.), Mobility of visually impaired people (pp. 537–584). Springer International. doi:10.1007/978-3-319-54446-5_17
  • Fabrikant, S. I., Hespanha, S. R., & Hegarty, M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Annals of the Association of American Geographers, 100(1), 13–29. doi:10.1080/00045600903362378
  • Findlater, L., Chinh, B., Jain, D., Froehlich, J., Kushalnagar, R., & Lin, A. C. (2019 Deaf and hard-of-hearing individuals' preferences for wearable and mobile sound awareness technologies 2019 CHI Conference on Human Factors in Computing Systems May 5-9, 2019 Glasgow, Scotland). 22 May 2020.
  • Freeman, E., Wilson, G., Vo, D. B., Ng, A., Politis, I., & Brewster, S. (2017). Multimodal feedback in HCI: Haptics, non-speech audio, and their applications. The Handbook of Multimodal-multisensor Interfaces: Foundations, User Modeling, and Common Modality Combinations, 1, 277–317. ACM Books #14.
  • Frei, P., Richter, K. F., & Fabrikant, S. I. (2016 Stress supports spatial knowledge acquisition during wayfinding with mobile maps. International conference on GiScience September 2016 Montreal, Canada). . In (Vol. , pp.). 4.
  • Friedman, A., & Kohler, B. (2003). Bidimensional regression: Assessing the configural similarity and accuracy of cognitive maps and other two-dimensional data sets. Psychological Methods, 8(4), 68–91. doi:10.1037/1082-989X.8.4.468
  • Froehlich, J. E., Brock, A. M., Caspi, A., Guerreiro, J., Hara, K., Kirkham, R., … Tannert, B. (2019). Grand challenges in accessible maps. Interactions, 26(2), 78–81. doi:10.1145/3301657
  • Furman, A. J., Clements-Stephens, A. M., Marchette, S. A., & Shelton, A. L. (2014). Persistent and stable biases in spatial learning mechanisms predict navigational style. Cognitive, Affective & Behavioral Neuroscience, 14(4), 1375–1391. doi:10.3758/s13415-014-0279-6
  • Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108–117. doi:10.1016/j.cognition.2018.06.020
  • Gallay, M., Denis, M., & Auvray, M. (2013). Navigation assistance for blind pedestrians: guidelines for the design of devices and implications for spatial cognition. In T. Tenbrink, J. M. Wiener, & C. Claramunt (Eds.), Representing space in cognition (pp. 244–267). Oxford University Press. doi:10.1093/acprof:oso/9780199679911.003.0011
  • Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition and Computation, 13(4), 319–350. doi:10.1080/13875868.2013.792821
  • Gath-Morad, M., Aguilar, L., Dalton, R. C., & Holscher, C. (2020). cogARCH: Simulating wayfinding by architecture in multilevel buildings. In SimAUD 2020 Symposium on Simulation for Architecture and Urban Design Online, 8, 1–8.
  • Giudice, N. A., Bakdash, J. Z., & Legge, G. E. (2007). Wayfinding with words: Spatial learning and navigation using dynamically updated verbal descriptions. Psychological Research, 71(3), 347–358. doi:10.1007/s00426-006-0089-8
  • Giudice, N. A., Betty, M. R., & Loomis, J. M. (2011). Functional equivalence of spatial images from touch and vision: Evidence from spatial updating in blind and sighted individuals. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(3), 621–634. doi:10.1037/a0022331
  • Giudice, N. A., Guenther, B. A., Jensen, N. A., & Haase, K. N. (2020). Cognitive mapping without vision: Comparing wayfinding performance after learning from digital touchscreen-based multimodal maps vs. embossed tactile overlays. Frontiers in Human Neuroscience, 14, 87. doi:10.3389/fnhum.2020.00087
  • Giudice, N. A., Guenther, B. A., Kaplan, T. M., Anderson, S. M., Knuesel, R. J., & Cioffi, J. F. (2020). Use of an indoor navigation system by sighted and blind travelers: Performance similarities across visual status and age. ACM Transactions on Accessible Computing, 13(3), 1–27. doi:10.1145/3407191
  • Giudice, N. A., & Legge, G. E. (2008). Blind navigation and the role of technology. In A. S. Helal, M. Mokhtari, & B. Abdulrazak (Eds.), The engineering handbook of smart technology for aging, disability, and Independence (pp. 479–500). Wiley. doi:10.1002/9780470379424.ch25
  • Giudice, N. A., & Long, R. G. (in press). Establishing and maintaining orientation: tools, techniques, and technologies. In Foundations of orientation and mobility (4th ed., Vol. 1, chap. 2). New York, NY: AFB Press.
  • Giudice, N. A., Whalen, W. E., Riehle, T. H., Anderson, S. M., & Doore, S. A. (2019). Evaluation of an accessible, real-time, and infrastructure-freeindoor navigation system by users who are blind in the Mall of America. Journal of Visual Impairment & Blindness, 113(2), 140–155. doi:10.1177/0145482X19840918
  • Golledge, R. G. (1978, December). Representing, interpreting, and using cognized environments. In Papers of the regional science association (Vol. 41(1), pp. 168–204). New York, NY: Springer
  • Gramann, K., Hoepner, P., & Karrer-Gauss, K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, 8. doi:10.3389/fpsyg.2017.00193
  • Hamburger, K., & Knauff, M. (2019). Odors can serve as landmarks in human wayfinding. Cognitive Science, 43(11), e12798. doi:10.1111/cogs.12798
  • hard-of-hearing individuals’ preferences for wearable and mobile sound awareness technologies. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13. 10.1145/3290605.3300276.
  • Harwood, K., & Wickens, C. D. (1991). Frames of reference for helicopter electronic maps: the relevance of spatial cognition and componential analysis. The International Journal of Aviation Psychology, 1(1), 5–23. doi:10.1207/s15327108ijap0101_2
  • Hegarty, M. (2013). Cognition, metacognition, and the design of maps. Current Directions in Psychological Science, 22(1), 3–9. doi:10.1177/0963721412469395
  • Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(1), 37–53. doi:10.1037/a0017683
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. doi:10.1016/j.intell.2005.09.005
  • Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15–24. doi:10.1016/j.ijhcs.2018.04.006
  • Hirtle, S. C., & Raubal, M. (2013). Many to many mobile maps. In M. Raubal, D. M. Mark, & A. U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 141–157). Springer. doi:10.1007/978-3-642-34359-9_8
  • Hirtle, S., Richter, K.-F., Srinivas, S., & Firth, R. (2010). This is the tricky part: when directions become difficult. Journal of Spatial Information Science, 1, 53–73. doi:10.5311/JOSIS.2010.1.5
  • Huffman, D. J., & Ekstrom, A. D. (2019). A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron, 104(3), 611–622. doi:10.1016/j.neuron.2019.08.012
  • Ishikawa, T. (2019). Satellite navigation and geospatial awareness: long-term effects of using navigation tools on wayfinding and spatial orientation. The Professional Geographer, 71(2), 197–209. doi:10.1080/00330124.2018.1479970
  • Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74–82. doi:10.1016/j.jenvp.2007.09.002
  • Ishikawa, T., & Montello, D. (2006). Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi:10.1016/j.cogpsych.2005.08.003
  • Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users’ wayfinding behavior. Cartographic Perspectives, 75(75), 17–28. doi:10.14714/CP75.82
  • Iwarsson, S., & Ståhl, A. (2003). Accessibility, usability and universal design: Positioning and definition of concepts describing person-environment relationships. Disability and Rehabilitation, 25(2), 57–66. doi:10.1080/dre.25.2.57.66
  • Jacobs, L. F., Arter, J., Cook, A., & Sulloway, F. J. (2015). Olfactory orientation and navigation in humans. PLOS ONE, 10(6), e0129387. doi:10.1371/journal.pone.0129387
  • Jain, D., Ngo, H., Patel, P., Goodman, S., Findlater, L., & Froehlich, J. (2020), October. SoundWatch: exploring smartwatch-based deep learning approaches to support sound wwareness for deaf and hard of hearing users. In The 22nd International ACM SIGACCESS Conference on Computers and Accessibility October 2020 Virtual Event Greece (pp. 1–13).
  • Keil, J., Edler, D., Kuchinke, L., & Dickmann, F. (2020). Effects of visual map complexity on the attentional processing of landmarks. PLOS ONE, 15(3), e0229575. doi:10.1371/journal.pone.0229575
  • Kiefer, P., Giannopoulos, I., Raubal, M., & Duchowski, A. (2017). Eye tracking for spatial research: Cognition, computation, challenges. Spatial Cognition and Computation, 17(1–2), 1–19. doi:10.1080/13875868.2016.1254634
  • Kiefer, P., Straub, F., & Raubal, M. (2012). Location-aware mobile eye-tracking for the explanation of wayfinding behavior. In Proceedings of the AGILE’2012 International Conference on Geographic Information Science Lisbon, Portugal, 6.
  • Klatzky, R. L., Giudice, N. A., Bennett, C. R., & Loomis, J. M. (2014). Touch-screen technology for the dynamic display of 2D spatial information without vision: Promise and progress. Multisensory Research, 27(5–6), 359–378. doi:10.1163/22134808-00002447
  • Klatzky, R. L., Loomis, J. M., Golledge, R. G., Cicinelli, J. G., Doherty, S., & Pellegrino, J. W. (1990). Acquisition of route and survey knowledge in the absence of vision. Journal of Motor Behavior, 22(1), 19–43. doi:10.1080/00222895.1990.10735500
  • Klatzky, R. L., Marston, J. R., Giudice, N. A., Golledge, R. G., & Loomis, J. M. (2006). Cognitive load of navigating without vision when guided by virtual sound versus spatial language. Journal of Experimental Psychology. Applied, 12(4), 223–232. doi:10.1037/1076-898X.12.4.223
  • Klippel, A. (2003). Wayfinding choremes: Conceptualizing wayfinding and route direction elements. Bremen, Germany: University of Bremen Dissertations.
  • Klippel, A., Hansen, S., Richter, K.-F., & Winter, S. (2009). Urban granularities: A data structure for cognitively ergonomic route directions. GeoInformatica, 13(2), 223–247. doi:10.1007/s10707-008-0051-6
  • Klippel, A., Hirtle, S., & Davies, C. (2010). You-are-here maps: Creating spatial awareness through map-like representations. Spatial Cognition and Computation, 10(2–3), 83–93. doi:10.1080/13875861003770625
  • Klippel, A., Tenbrink, T., & Montello, D. R. (2010). The role of structure and function in the conceptualization of directions. In E. van der Zee & M. Vulchanova (Eds.), Motion encoding in language and space. Oxford University Press. doi:10.1093/acprof:oso/9780199661213.003.0006
  • Klippel, A., & Winter, S. (2005). Structural salience of landmarks for route directions. In A. G. Cohn & D. M. Mark(Eds., Spatial information theory (Vol. 3693, pp. 347–362). Springer doi:10.1007/11556114_22
  • Krieger, P., Kattenbeck, M., Ludwig, B., Helmbrecht, J., & Giannopoulos, I. (2020). Hey you! Let’s talk. Dialogue-initiatives revisited for wayfinding instructions. AGILE: GIScience Series, 1, 1–19. doi:10.5194/agile-giss-1-11-2020
  • Krukar, J., Anacta, V. J., & Schwering, A. (2020). The effect of orientation instructions on the recall and reuse of route and survey elements in wayfinding descriptions. Journal of Environmental Psychology, 68, 101407. doi:10.1016/j.jenvp.2020.101407
  • Krukar, J., Mavros, P., & Hoelscher, C. (2020). Towards capturing focal/ambient attention during dynamic wayfinding. In ACM Symposium on Eye Tracking Research and Applications, 22, 1–5. 10.1145/3379157.3391417
  • Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11–12), 765–779. doi:10.1007/BF01544230
  • Li, R. (2019). Spatial learning in smart applications: Enhancing spatial awareness through visualized off-screen landmarks on mobile devices. Annals of the American Association of Geographers, 110(2), 421–433. doi:10.1080/24694452.2019.1670611
  • Li, H., Corey, R. R., Giudice, U., & Giudice, N. A. (2016). Assessment of visualization interfaces for assisting the development of multi-level cognitive maps. In D. D. Schmorrow & M. C. Fidopiastis (Eds.), Proceedings of the 10th International Conference of Foundations of Augmented Cognition July 2016 Toronto, Canada (pp. 308–321). Springer International.
  • Liao, H., Dong, W., Peng, C., & Liu, H. (2017). Exploring differences of visual attention in pedestrian navigation when using 2D maps and 3D geo-browsers. Cartography and Geographic Information Science, 44(6), 474–490. doi:10.1080/15230406.2016.1174886
  • Loomis, J. M., Golledge, R. D., & Klatzky, R. L. (2001). GPS-based navigation systems for the visually impaired. In W. Barfield & T. Caudell (Eds.), Fundamentals of wearable computers and augmented reality (pp. 429–446). Mahwah, NJ: Erlbaum.
  • Loomis, J. M., Klatzky, R. L., & Giudice, N. A. (2013). Representing 3D space in working memory: Spatial images from vision, hearing, touch, and language. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 131–155). Springer. doi:10.1007/978-1-4614-5879-1_8
  • Loomis, J. M., Klatzky, R. L., Giudice, N. A., Manduchi, R., & Kurniawan, S. (2012). Sensory substitution of vision: Importance of perceptual and cognitive processing. In R. Manduchi & S. Kurniawan (Eds.), Assistive technology for blindness and low vision (pp. 162–191). Boca Raton, FL: CRC Press.
  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Pellegrino, J. W., Fry, P. A., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology. General, 122(1), 73–91. doi:10.1037/0096-3445.122.1.73
  • Löwen, H., Krukar, J., & Schwering, A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149. doi:10.3390/ijgi8030149
  • Maidenbaum, S., Patel, A., Gedankien, T., & Jacobs, J. (2020). The effect of navigational aids on spatial memory in virtual reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, pp. 645–646. 10.1109/VRW50115.2020.00173
  • Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predict human navigational behavior. Journal of Neuroscience, 31(43), 15264–15268. doi:10.1523/JNEUROSCI.3634-11.2011
  • Marston, J. R., Loomis, J. M., Klatzky, R. L., Golledge, R. G., & Smith, E. L. (2006). Evaluation of spatial displays for navigation without sight. ACM Transactions on Applied Perception, 3(2), 110–124. doi:10.1145/1141897.1141900
  • McKenzie, G., Hegarty, M., Barrett, T., & Goodchild, M. (2016). Assessing the effectiveness of different visualizations for judgments of positional uncertainty. International Journal of Geographical Information Science, 30(2), 221–239. doi:10.1080/13658816.2015.1082566
  • Meneghetti, C., Muffato, V., Varotto, D., & De Beni, R. (2017). How directions of route descriptions influence orientation specificity: The contribution of spatial abilities. Psychological Research, 81(2), 445–461. doi:10.1007/s00426-016-0754-5
  • Michon, P.-E., & Denis, M. (2001). When and why are visual landmarks used in giving directions? In D. R. Montello(Ed., Spatial information theory (Vol. 2205, pp. 292–305). Springer doi:10.1007/3-540-45424-1_20
  • Montello, D. R. (1998). A New Framework for Understanding the Acquisition. Spatial and temporal reasoning in geographic information systems, 143.
  • Montello, D. R. (2002). Cognitive map-design research in the twentieth century: Theoretical and empirical approaches. Cartography and Geographic Information Science, 29(3), 283–304. doi:10.1559/152304002782008503
  • Montello, D. R. (2005). Navigation. In P. Shah & A. Miyake (Eds.), The cambridge handbook of visuospatial thinking (pp. 257–294). Cambridge University Press. doi:10.1017/CBO9780511610448.008
  • Montello, D. R. (2010). You are where? The function and frustration of you-are-here (YAH) maps. Spatial Cognition and Computation, 10(2–3), 94–104. doi:10.1080/13875860903585323
  • Montello, D. R., Fabrikant, S. I., & Davies, C. (2018). Cognitive perspectives on cartography and other geographic information visualizations. In D. R. Montello (Ed.), Handbook of behavioral and cognitive geography (pp. 177–196). Northampton, MA: Elgar.
  • Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 142–157. doi:10.1037/0278-7393.30.1.142
  • Munion, A. K., Stefanucci, J. K., Rovira, E., Squire, P., & Hendricks, M. (2019). Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychonomic Bulletin & Review, 26(6), 1933–1940. doi:10.3758/s13423-019-01659-w
  • Münzer, S., Lörch, L., & Frankenstein, J. (2019). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology. Applied, 26(1), 73–88. doi:10.1037/xap0000237
  • Nardi, D., Newcombe, N. S., & Shipley, T. F. (2013). Reorienting with terrain slope and landmarks. Memory & Cognition, 41(2), 214–228. doi:10.3758/s13421-012-0254-9
  • Nardi, D., Twyman, A. D., Holden, M. P., & Clark, J. M. (2020). Tuning in: Can humans use auditory cues for spatial reorientation? Spatial Cognition and Computation, 20(2), 83–103. doi:10.1080/13875868.2019.1702665
  • Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. New York, NY: Routledge.
  • Nothegger, C., Winter, S., & Raubal, M. (2004). Selection of salient features for route directions. Spatial Cognition and Computation, 4(2), 113–136. doi:10.1207/s15427633scc0402_1
  • Ohm, C., Bienk, S., Kattenbeck, M., Ludwig, B., & Müller, M. (2016). Towards interfaces of mobile pedestrian navigation systems adapted to the user’s orientation skills. Pervasive and Mobile Computing, 26, 121–134. doi:10.1016/j.pmcj.2015.10.006
  • Palani, H. P., Giudice, U., & Giudice, N. A. (2016). Evaluation of non-visual zooming operations on touchscreen devices. In M. Antona & C. Stephanidis (Eds.), Proceedings of the 10th International Conference of Universal Access in Human-Computer Interaction July 2016 Toronto, Canada (pp. 162–174): Springer International.
  • Parush, A., Ahuvia, S., & Erev, I. (2007). Degradation in spatial knowledge acquisition when using automatic navigation systems. In International Conference on Spatial Information Theory Melbourne, Australia (pp. 238–254). Springer.
  • Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13(4), 493–508. doi:10.1080/09541440125778
  • Presson, C. C. (1980). Spatial egocentrism and the effect of an alternate frame of reference. Journal of Experimental Child Psychology, 29(3), 391–402. doi:10.1016/0022-0965(80)90102-2
  • Prewett, M. S., Elliott, L. R., Walvoord, A. G., & Coovert, M. D. (2011). A meta-analysis of vibrotactile and visual information displays for improving task performance. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(1), 123–132. doi:10.1109/TSMCC.2010.2103057
  • Prewett, M. S., Yang, L., Stilson, F. R., Gray, A. A., Coovert, M. D., Burke, J., & Elliot, L. R. (2006). The benefits of multimodal information: A meta-analysis comparing visual and visual-tactile feedback. In Proceedings of the 8th International Conference on Multimodal interfaces November 2006 Banff Alberta, Canada (pp. 333–338).
  • Ranasinghe, C., Heitmann, S., Hamzin, A., Pfeiffer, M., & Kray, C. (2018). Pedestrian navigation and GPS deteriorations: User behavior and adaptation strategies. In Proceedings of the 30th Australian Conference on Computer-Human Interaction, pp. 266–277. 10.1145/3292147.3292154
  • Ranasinghe, C., & Kray, C. (2018). Location information quality: A review. Sensors, 18(11), 3999. doi:10.3390/s18113999
  • Ranasinghe, C., Krukar, J., & Kray, C. (2018). Visualizing location uncertainty on mobile devices: Cross-cultural differences in perceptions and preferences. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 1–22. doi:10.1145/3191762
  • Rand, K. M., Barhorst-Cates, E. M., Kiris, E., Thompson, W. B., & Creem-Regehr, S. H. (2019). Going the distance and beyond: Simulated low vision increases perception of distance traveled during locomotion. Psychological Research, 83(7), 1349–1362. doi:10.1007/s00426-018-1019-2
  • Rand, K. M., Creem-Regehr, S. H., & Thompson, W. B. (2015). Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring. Journal of Experimental Psychology. Human Perception and Performance, 41(3), 649–664. doi:10.1037/xhp0000040
  • Rastogi, R., Pawluk, D. T. V., & Ketchum, J. (2013). Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 101(9), 2081–2092.
  • Raubal, M. (2009). Cognitive engineering for Geographic Information Science. Geography Compass, 3(3), 1087–1104. doi:10.1111/j.1749-8198.2009.00224.x
  • Research Center, P. (2019). Mobile fact sheet [Data file and code book 15 January 2020]. Retrieved from https://www.pewresearch.org/internet/fact-sheet/mobile/
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. doi:10.3758/BF03211566
  • Richter, K.-F. (2007). A uniform handling of different landmark types in route directions. In S. Winter, M. Duckham, L. Kulik, & B. Kuipers(Eds., Spatial information theory (Vol. 4736, pp. 373–389). Springer doi:10.1007/978-3-540-74788-8_23
  • Richter, K.-F., Tomko, M., & Coltekin, A. (2015). Are we there yet? Spatial cognitive engineering for situated human-computer interaction (pp. 8). Zurich, Switzerland: ZORA, University of Zurich Open Access Repository.
  • Richter, K. F., & Winter, S. (2014). Landmarks. New York, NY: Springer.
  • Riehle, T. H., Anderson, S. M., Lichter, P. A., Whalen, W. E., & Giudice, N. A. (2013). Indoor inertial waypoint navigation for the blind. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5187–5190. 10.1109/EMBC.2013.6610717
  • Rosenholtz, R. (2016). Capabilities and limitations of peripheral vision. Annual Review of Vision Science, 2(1), 437–457. doi:10.1146/annurev-vision-082114-035733
  • Rosenholtz, R. (2020). Demystifying visual awareness: Peripheral encoding plus limited decision complexity resolve the paradox of rich visual experience and curious perceptual failures. Attention, Perception & Psychophysics, 82(3), 901–925. doi:10.3758/s13414-019-01968-1
  • Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17. doi:10.1167/7.2.17
  • Rosenholtz, R., & Yu, D. (2019). Modern vision science for designers: Making designs clear at a glance. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. 10.1145/3290607.3298815
  • Roth, R. E. (2018). What is mobile first cartographic design? In Proceedings of The International Cartographic Association Workshop on Mobile Map User Experience Design. Tokyo, Japan
  • Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12–20. doi:10.1016/j.jenvp.2019.05.001
  • Ruginski, I. T., Stefanucci, J. K., & Creem-Regehr, S. H. (2018). State anxiety influences sex differences in spatial learning. In S. Creem-Regehr, J. Schöning, & A. Klippel(Eds., Spatial cognition XI (Vol. 11034, pp. 244–257). Springer International doi:10.1007/978-3-319-96385-3_17
  • Schinazi, V. R., Thrash, T., & Chebat, D.-R. (2016). Spatial navigation by congenitally blind individuals: Spatial navigation by congenitally blind individuals. Wiley Interdisciplinary Reviews. Cognitive Science, 7(1), 37–58. doi:10.1002/wcs.1375
  • Schroder, C. J., Mackaness, W. A., & Gittings, B. M. (2011). Giving the ‘right’ route directions: The requirements for pedestrian navigation systems. Transactions in GIS, 15(3), 419–438. doi:10.1111/j.1467-9671.2011.01266.x
  • Schwering, A., Krukar, J., Li, R., Anacta, V. J., & Fuest, S. (2017). Wayfinding through orientation. Spatial Cognition and Computation, 17(4), 273–303. doi:10.1080/13875868.2017.1322597
  • Schwering, A., Li, R., & Anacta, V. J. A. (2013). Orientation information in different forms of route instructions. In AGILE 2013 Proceedings Leuven, Belgium.
  • Schwering, A., Wang, J., Chipofya, M., Jan, S., Li, R., & Broelemann, K. (2014). SketchMapia: Qualitative representations for the alignment of sketch and metric maps. Spatial Cognition and Computation, 14(3), 220–254. doi:10.1080/13875868.2014.917378
  • Shelton, A. L., Marchette, S. A., & Furman, A. J. (2013). A mechanistic approach to individual differences in spatial learning, memory, and navigation. Psychology of Learning and Motivation, 59, 223–259.
  • Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4(1), 102–106. doi:10.3758/BF03210780
  • Snowdon, C., & Kray, C. (2009). Exploring the use of landmarks for mobile navigation support in natural environments. In Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services Bonn, Germany, pp. 1–10.
  • Stevens, C. A., & Carlson, R. A. (2019). Is simpler always better? Effects of perceptual detail and viewpoint on spatial cognition and metacognition. The American Journal of Psychology, 132(3), 293–302. doi:10.5406/amerjpsyc.132.3.0293
  • Story, M. F. (1998). Maximizing usability: The principles of universal design. Assistive Technology, 10(1), 4–12. doi:10.1080/10400435.1998.10131955
  • Tannert, B., & Schöning, J. (2018). Disabled, but at what cost? An examination of wheelchair routing algorithms. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 1–7. 10.1145/3229434.3229458
  • Taylor, H. A., Brunyé, T. T., & Taylor, S. T. (2008). Spatial mental representation: Implications for navigation system design. Reviews of Human Factors and Ergonomics, 4(1), 1–40. doi:10.1518/155723408X342835
  • Tenbrink, T. (2018). Natural language and geography: the meaning and use of spatial concepts in geographical contexts. In Handbook of Behavioral and Cognitive Geography. Edward Elgar Publishing.
  • Tenbrink, T., & Winter, S. (2009). Variable granularity in route directions. Spatial Cognition and Computation, 9(1), 64–93. doi:10.1080/13875860902718172
  • Thrash, T., Lanini-Maggi, S., Fabrikant, S. I., Bertel, S., Brügger, A., Credé, S., … Richter, K.-F. (2019). The future of geographic information displays from GIScience, cartographic, and cognitive science perspectives. LIPIcs, 142, COSIT’19. doi:10.4230/lipics.cosit.2019.19
  • Tomko, M., & Richter, K.-F. (2015). Defensive wayfinding: Incongruent information in route following. In S. I. Fabrikant, M. Raubal, M. Bertolotto, C. Davies, S. Freundschuh, & S. Bell(Eds., Spatial information theory (Vol. 9368, pp. 426–446). Springer International doi:10.1007/978-3-319-23374-1_20
  • Unrau, R., & Kray, C. (2019). Usability evaluation for geographic information systems: A systematic literature review. International Journal of Geographical Information Science, 33(4), 645–665. doi:10.1080/13658816.2018.1554813
  • Vitense, H. S., Jacko, J. A., & Emery, V. K. (2003). Multimodal feedback: An assessment of performance and mental workload. Ergonomics, 46(1–3), 68–87. doi:10.1080/00140130303534
  • Wang, C., Chen, Y., Zheng, S., Yuan, Y., & Wang, S. (2020). Research on generating an indoor landmark salience model for self-location and spatial orientation from eye-tracking data. ISPRS International Journal of Geo-Information, 9(2), 97. doi:10.3390/ijgi9020097
  • Warren, W. H., Rothman, D. B., Schnapp, B. H., & Ericson, J. D. (2017). Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166, 152–163. doi:10.1016/j.cognition.2017.05.020
  • Weisberg, S. M., Badgio, D., & Chatterjee, A. (2018). Feel the way with a vibrotactile compass: Does a navigational aid aid navigation? Journal of Experimental Psychology. Learning, Memory, and Cognition, 44(5), 667–679. doi:10.1037/xlm0000472
  • Weisberg, S. M., & Newcombe, N. S. (2018). Cognitive maps: Some people make them, some people struggle. Current Directions in Psychological Science, 27(4), 220–226. doi:10.1177/0963721417744521
  • Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(3), 669–682. doi:10.1037/a0035261
  • Weissensteiner, E., & Winter, S. (2004). Landmarks in the communication of route directions. In M. J. Egenhofer, C. Freksa, & H. J. Miller(Eds., Geographic information science (Vol. 3234, pp. 313–326). Springer doi:10.1007/978-3-540-30231-5_21
  • Wiener, J. M., & Pazzaglia, F. (2021). Ageing-and dementia-friendly design: theory and evidence from cognitive psychology, neuropsychology and environmental psychology can contribute to design guidelines that minimise spatial disorientation. Cognitive processing, 22(4), 715–730.
  • Wiener, J. M., Tenbrink, T., Henschel, J., & H ̈olscher, C. (2008). Situated and prospective path planning: Route choice in an urban environment. In CogSci 2008: 30th Annual Conference of the Cognitive Science Society Washington, D.C.
  • Wilkening, J., & Fabrikant, S. I. (2011). How do decision time and realism affect map-based decision making? In M. Egenhofer, N. Giudice, R. Moratz, & M. Worboys(Eds., Spatial information theory (Vol. 6899, pp. 1–19). Springer doi:10.1007/978-3-642-23196-4_1
  • Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100–110. doi:10.1016/j.compenvurbsys.2009.01.004
  • Wolbers, T., Klatzky, R. L., Loomis, J. M., Wutte, M. G., & Giudice, N. A. (2011). Modality-independent coding of spatial layout in the human brain. Current Biology, 21(11), 984–989. doi:10.1016/j.cub.2011.04.038
  • Wunderlich, A., & Gramann, K. (2019). Overcoming spatial deskilling using landmark-based navigation assistance systems. Preprint. doi:10.1101/789529