2,894
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Lantana camara leaf extract ameliorates memory deficit and the neuroinflammation associated with scopolamine-induced Alzheimer’s-like cognitive impairment in zebrafish and mice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 825-838 | Received 25 Oct 2022, Accepted 25 Apr 2023, Published online: 22 May 2023

References

  • Abid NB, Naseer MI, Kim MO. 2019. Comparative gene-expression analysis of Alzheimer’s Disease progression with aging in transgenic mouse model. IJMS. 20(5):1219.
  • Adeniyi A, Asase A, Ekpe PK, Asitoakor BK, Adu-Gyamfi A, Avekor PY. 2018. Ethnobotanical study of medicinal plants from Ghana; confirmation of ethnobotanical uses, and review of biological and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. J Herb Med. 14:76–87.
  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, et al. 2000. Inflammation and Alzheimer’s disease. Neurobiol Aging. 21(3):383–421.
  • Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. 2018. Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int. 2018:3087475.
  • Alonso A, Del C, Li B, Grundke-Iqbal I, Iqbal K. 2008. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 5(4):375–384.
  • Alzheimer’s Association. 2021. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 17:327–406.
  • Anand P, Singh B. 2013. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 36(4):375–399.
  • Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. 2015. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol. 14(9):926–944.
  • Ardestani PM, Evans AK, Yi B, Nguyen T, Coutellier L, Shamloo M. 2017. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer’s disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology. 116:371–386.
  • Ashal TF, Ifora I, Oktavia S. 2020. Potential anti-inflammatory effects of Lantana camara L. Int Res J Pharm Med Sci. 3(6):1–4.
  • Baral S, Cho DH, Pariyar R, Yoon CS, Chang BY, Kim DS, Cho HK, Kim SY, Oh H, Kim YC, et al. 2015. The ameliorating effect of myrrh on scopolamine-induced memory impairments in mice. Evid Based Complement Alternat Med. 2015:925432.
  • Bermejo P, Martín-Aragón S, Benedí J, Susín C, Felici E, Gil P, Ribera JM, Villar AM. 2008. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. Free Radic Res. 42(2):162–170.
  • Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. 2004. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell. 3(4):169–176.
  • Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. 1995. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 202(1-2):17–20.
  • Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J. 1995. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci U S A. 92(7):3032–3035.
  • Callahan PM, Terry AV, Peitsch MC, Hoeng J, Koshibu K. 2021. Differential effects of alkaloids on memory in rodents. Sci Rep. 11(1):9843.
  • Chen WN, Yeong KY. 2020. Scopolamine, a toxin-induced experimental model, used for research in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 19(2):85–93.
  • Cheon SY, Koo B-N, Kim SY, Kam E, Nam J, Kim E. 2021. Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci Rep. 11(1):8376.
  • Cognato GdP, Bortolotto JW, Blazina AR, Christoff RR, Lara DR, Vianna MR, Bonan CD. 2012. Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem. 98(4):321–328.
  • Coyle JT, Price DL, DeLong MR. 1983. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 219(4589):1184–1190.
  • Commins S, Kirby BP. 2019. The complexities of behavioral assessment in neurodegenerative disorders: a focus on Alzheimer’s disease. Pharmacol Res. 147:104363.
  • Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). 2010. Official Journal of the European Union
  • Dorey E, Chang N, Liu QY, Yang Z, Zhang W. 2014. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull. 30(2):317–330.
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. 2016. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 14(1):101–115.
  • Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G. 1991. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett. 129(2):318–320.
  • Godyń J, Jończyk J, Panek D, Malawska B. 2016. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep. 68(1):127–138.
  • Götz J, Bodea L-G, Goedert M. 2018. Rodent models for Alzheimer disease. Nat Rev Neurosci. 19(10):583–598.
  • Guimarães FS, Chiaretti TM, Graeff FG, Zuardi AW. 1990. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology. 100(4):558–559.
  • Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD, Mohs RC, Aisen PS, Pasinetti GM. 2001. Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol. 58(3):487–492.
  • Hoozemans JJ, Brückner MK, Rozemuller AJ, Veerhuis R, Eikelenboom P, Arendt T. 2002. Cyclin D1 and cyclin E are co-localized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. J Neuropathol Exp Neurol. 61(8):678–688.
  • Huang Y, Mucke L. 2012. Alzheimer mechanisms and therapeutic strategies. Cell. 148(6):1204–1222.
  • Hoozemans JJ, Rozemuller AJ, Janssen I, De Groot CJ, Veerhuis R, Eikelenboom P. 2001. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol. 101(1):2–8.
  • Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. 2018. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol. 19(12):755–773.
  • Jahn H. 2013. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci. 15(4):445–454.
  • Kang MS, Hirai S, Goto T, Kuroyanagi K, Lee JY, Uemura T, Ezaki Y, Takahashi N, Kawada T. 2008. Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochem Biophys Res Commun. 369(2):333–338.
  • Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R. 1998. Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem. 70(5):2179–2187.
  • Karthivashan G, Park SY, Kweon MH, Kim J, Haque ME, Cho DY, Kim IS, Cho EA, Ganesan P, Choi DK. 2018. Ameliorative potential of desalted Salicornia europaea L. extract in multifaceted Alzheimer’s-like scopolamine-induced amnesic mice model. Sci Rep. 8(1):7174.
  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4:575–590.
  • Klinkenberg I, Blokland A. 2010. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 34(8):1307–1350.
  • Kouémou NE, Taiwe GS, Moto FCO, Pale S, Ngoupaye GT, Njapdounke JSK, Nkantchoua GCN, Pahaye DB, Bum EN. 2017. Nootropic and neuroprotective effects of Dichrocephala integrifolia on scopolamine mouse model of Alzheimer’s disease. Front Pharmacol. 8:847.
  • Kukuia KKE, Appiah F, Dugbartey GJ, Takyi YF, Amoateng P, Amponsah SK, Adi-Dako O, Koomson AE, Ayertey F, Adutwum-Ofosu KK. 2022. Extract of Mallotus oppositifolius (Geiseler) Müll. Arg. increased prefrontal cortex dendritic spine density and serotonin and attenuated parachlorophenylalanine-aggravated aggressive and depressive behaviors in mice. Front Pharmacol. 13:962549.
  • Lee DC, Rizer J, Hunt JB, Selenica ML, Gordon MN, Morgan D. 2013. Review: experimental manipulations of microglia in mouse models of Alzheimer’s pathology: activation reduces amyloid but hastens tau pathology. Neuropathol Appl Neurobiol. 39(1):69–85.
  • Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. 2004. Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. 279(47):49523–49532.
  • Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC. 2011. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 8(1):67–80.
  • Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, Zhang D, Shen Y. 2004. Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J Neurosci. 24(7):1760–1771.
  • Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WS. 2000. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci. 20(1):149–155.
  • Liu CY, Wang X, Liu C, Zhang HL. 2019. Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci. 13(11):1–19.
  • Liu Q, Liu JP, Mei JH, Li SJ, Shi LQ, Lin ZH, Xie BY, Sun WG, Wang ZY, Yang XL, et al. 2020. Betulin isolated from Pyrola incarnata Fisch. inhibited lipopolysaccharide (LPS)-induced neuroinflammation with the guidance of computer-aided drug design. Bioorg Med Chem Lett. 30(12):127193.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25(4):402–408.
  • Maddula K, Kumar VP, Anusha JR. 2017. Assessment of aqueous extract of Ocimum sanctum leaves in memory enhancement and preventing memory impairment activities in Zebra Fish model. J Basic Clin Pharm. 8:185–192.
  • Millycent S, Mwonjoria M, Juma K, Ngugi M, Njagi E. 2017. Evaluation of analgesic, anti-inflammatory and toxic effects of Lantana camara L. Int J Phytopharm. 8:89–97.
  • Mohs RC, Schmeidler J, Aryan M. 2000. Longitudinal studies of cognitive, functional and behavioral change in patients with Alzheimer’s disease. Statist Med. 19(11-12):1401–1409.
  • Muller-Ebeling C, Ratsch C. 1989. Heilpflanzen der Seychellen: Ein Beitrag zur kreolischen Volksheilkunde. 1st ed. Berlin: VWB-Verlag fur Wissenschaft und Bildung, German
  • National Research Council (US) 2011. Guide for the care and use of laboratory animals eighth Edition. p. 8 ed. Washington, DC: The National Academies Press.
  • Nazario LR, Antonioli R, Jr, Capiotti KM, Hallak JE, Zuardi AW, Crippa JA, Bonan CD, da Silva RS. 2015. Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio). Pharmacol Biochem Behav. 135:210–216.
  • Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC. 2013. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 5(1):61–69.
  • Nour A, Khan M, Sulaiman PI, Nour A. 2014. In vitro anti-acetylcholinesterase and antioxidant activity of selected Malaysian plants. Asian J Pharm Clin Res. 7:93–97.
  • Nunes-Tavares N, Santos L, Stutz B, Brito-Moreira J, Klein W, Ferreira S, Mello F. 2012. Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-peptide oligomers. J Biol Chem. 287(23):19377–19385.
  • Parada-Turska J, Turski WA. 1990. Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-D-aspartate receptors in learning and memory tasks. Neuropharmacology. 29(12):1111–1116.
  • Pellow S, Chopin P, File SE, Briley M. 1985. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 14(3):149–167.
  • Perry RT, Collins JS, Wiener H, Acton R, Go RC. 2001. The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging. 22(6):873–883.
  • Prieur EAK, Jadavji NM. 2019. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Protoc. 9(3):e3162.
  • Qiu Z, Gruol DL. 2003. Interleukin-6, beta-amyloid peptide and NMDA interactions in rat cortical neurons. J Neuroimmunol. 139(1-2):51–57.
  • Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB. 2004. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 295(1):245–257.
  • Ross EL, Weinberg MS, Arnold SE. 2022. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US. JAMA Neurol. 79(5):478–487.
  • Roy A. 2018. Role of medicinal plants against Alzheimer’s disease. Int J Complement Alt Med. 11:205–208.
  • Sambeth A, Riedel WJ, Smits LT, Blokland A. 2007. Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol. 572(2-3):151–159.
  • Saraf MK, Prabhakar S, Khanduja KL, Anand A. 2011. Bacopa monniera attenuates scopolamine-induced impairment of spatial memory in mice. Evid Based Complement Alternat Med. 2011:236186.
  • Sarter M, Bruno JP, Givens B. 2003. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem. 80(3):245–256.
  • Schliebs R, Arendt T. 2011. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 221(2):555–563.
  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. 2011. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 1(1):a006189.
  • Shaftel SS, Griffin WS, O'Banion MK. 2008. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 5:7.
  • Sinha P, Barocas JA. 2022. Cost-effectiveness of aducanumab to prevent Alzheimer’s disease progression at current list price. Alzheimers Dement. 8(1):e12256.
  • Sierra JA, Gilchrist K, Tabares-Guevara JH, Betancur-Galvis L, Ramirez-Pineda JR, González-Cardenete MA. 2022. Semisynthetic abietic and dehydroabietic acid derivatives and triptoquinone epimers interfere with LPS-triggered activation of dendritic cells. Molecules. 27(19):6684.
  • Stancampiano R, Cocco S, Cugusi C, Sarais L, Fadda F. 1999. Serotonin and acetylcholine release response in the rat hippocampus during a spatial memory task. Neuroscience. 89(4):1135–1143.
  • Suganthy N, Malar DS, Devi KP. 2016. Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metab Brain Dis. 31(4):937–949.
  • Sun Y, Lai MS, Lu CJ, Chen R-C. 2008. How long can patients with mild or moderate Alzheimer’s dementia maintain both the cognition and the therapy of cholinesterase inhibitors: a national population-based study. Eur J Neurol. 15(3):278–283.
  • Suthar SK, Lee HB, Sharma M. 2014. The synthesis of non-steroidal anti-inflammatory drug (NSAID)–lantadene prodrugs as novel lung adenocarcinoma inhibitors via the inhibition of cyclooxygenase-2 (COX-2), cyclin D1 and TNF-α-induced NF-κB activation. RSC Adv. 4(37):19283–19293.
  • Torres-Acosta N, O'Keefe JH, O'Keefe EL, Isaacson R, Small G. 2020. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J Alzheimers Dis. 78(2):619–626.
  • Varfolomeev EE, Ashkenazi A. 2004. Tumor necrosis factor: an apoptosis JuNKie? Cell. 116(4):491–497.
  • Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepak M. 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 109(2):359–363.
  • Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. 2021. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA. 118(33):e2102191118.
  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. 1981. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 10(2):122–126.
  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. 1982. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 215(4537):1237–1239.
  • WHO. 2021. Dementia. [updated 2 September 2021; accessed 2022 September 16, 2022]. https://www.who.int/news-room/fact-sheets/detail/dementia.
  • Yadang FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY, Taiwé GS, Agbor GA, Bum EN. 2020. Scopolamine-induced memory impairment in mice: neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int J Alzheimers Dis. 2020:6372059.
  • Yermakova AV, O'Banion MK. 2001. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging. 22(6):823–836.
  • Zanandrea R, Abreu MS, Piato A, Barcellos LJG, Giacomini A. 2018. Lithium prevents scopolamine-induced memory impairment in zebrafish. Neurosci Lett. 664:34–37.
  • Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al. 2013. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 153(3):707–720.
  • Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H. 2021. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease. Int J Biol Sci. 17(9):2181–2192.