904
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Characterization of potentially health-promoting constituents in sea fennel (Crithmum maritimum) cultivated in the Conero Natural Park (Marche region, Central Italy)

, , , &
Pages 1030-1040 | Received 28 Jan 2023, Accepted 08 Jun 2023, Published online: 06 Jul 2023

References

  • Adouani I, Du M, Hang TJ. 2013. Identification and determination of related substances in diosmin bulk drug and pharmaceutical formulations by HPLC and HPLC-MS. Chromatographia. 76(9–10):499–508. doi: 10.1007/s10337-013-2404-z.
  • Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F. 2001. Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A. 933(1–2):37–43. doi: 10.1016/s0021-9673(01)01212-2.
  • Alves-Silva JM, Guerra I, Gonçalves MJ, Cavaleiro C, Cruz MT, Figueirinha A, Salgueiro L. 2020. Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC-MS and HPLC-DAD-MS/MS, and their biological activities. Ind Crops Prod. 149:112329. doi: 10.1016/j.indcrop.2020.112329.
  • Atia A, Barhoumi Z, Mokded R, Abdelly C, Smaoui A. 2011. Environmental eco-physiology and economical potential of the halophyte Crithmum maritimum L. (Apiaceae). J Med Plants Res. 5:3564–3571.
  • Boutellaa S, Zellagui A, Öztürk M, Bensouici C, Ölmez ÖT, Menakh M, Duru ME. 2019. HPLC-DAD profiling and antioxidant activity of the n-butanol extract from aerial parts of Algerian Crithmum maritimum L. Acta Sci Nat. 6(1):8–16. doi: 10.2478/asn-2019-0002.
  • Clifford MN, Johnston KL, Knight S, Kuhnert N. 2003. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem. 51(10):2900–2911. doi: 10.1021/jf026187q.
  • Clifford MN, Kirkpatrick J, Kuhnert N, Roozendaal H, Salgado PR. 2008. LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chem. 106(1):379–385. doi: 10.1016/j.foodchem.2007.05.081.
  • Clifford MN, Knight S, Kuhnert N. 2005. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J Agric Food Chem. 53(10):3821–3832. doi: 10.1021/jf050046h.
  • Cornara L, D’Arrigo C, Pioli F, Borghesi B, Bottino C, Patrone E, Mariotti MG. 2009. Micromorphological investigation on the leaves of the rock samphire (Crithmum maritimum L.): occurrence of hesperidin and diosmin crystals. Plant Biosyst. 143(2):283–292. doi: 10.1080/11263500902722527.
  • Cunsolo F, Ruberto G, Amico V, Piattelli M. 1993. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J Nat Prod. 56(9):1598–1600. doi: 10.1021/np50099a022.
  • Cuyckens F, Claeys M. 2004. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 39(1):1–15. doi: 10.1002/jms.585.
  • De Andrade Neves N, Stringheta PC, Gómez-Alonso S, Hermosín-Gutiérrez I. 2018. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chem. 252:61–71. doi: 10.1016/j.foodchem.2018.01.078.
  • Farag NF, Farag MA, Abdelrahman EH, Azzam SM, El-Kashoury ESA. 2015. Metabolites profiling of Chrysanthemum pacificum Nakai parts using UPLC-PDA-MS coupled to chemometrics. Nat Prod Res. 29(14):1342–1349. doi: 10.1080/14786419.2015.1025396.
  • Franke W. 1982. Vitamin C in sea fennel (Crithmum maritimum), an edible wild plant. Econ Bot. 36(2):163–165. doi: 10.1007/BF02858711.
  • Gao X, Ma YL, Zhang P, Zheng XP, Sun BL, Hu FD. 2016. Chemical characteristics combined with bioactivity for comprehensive evaluation of tumuxiang based on HPLC-DAD and multivariate statistical methods. World J Tradit Chinese Med. 2(2):36–47. doi: 10.15806/j.issn.2311-8571.2015.0035.
  • García-Villalba R, Espín JC, Tomás-Barberán FA, Rocha-Guzmán NE. 2017. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J Food Compos Anal. 63(Oct. 2017):38–46. doi: 10.1016/j.jfca.2017.07.034.
  • Generalić Mekinić I, Blažević I, Mudnić I, Burčul F, Grga M, Skroza D, Jerčić I, Ljubenkov I, Boban M, Miloš M, et al. 2016. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J Food Sci Technol. 53(7):3104–3112. doi: 10.1007/s13197-016-2283-z.
  • Generalić Mekinić I, Šimat V, Ljubenkov I, Burčul F, Grga M, Mihajlovski M, Lončar R, Katalinić V, Skroza D. 2018. Influence of the vegetation period on sea fennel, Crithmum maritimum L. (Apiaceae), phenolic composition, antioxidant and anticholinesterase activities. Ind Crops Prod. 124:947–953. doi: 10.1016/j.indcrop.2018.08.080.
  • Gnocchi D, Cesari G, Calabrese GJ, Capone R, Sabbà C, Mazzocca A. 2020. Inhibition of hepatocellular carcinoma growth by ethyl acetate extracts of Apulian Brassica oleracea L. and Crithmum maritimum L. Plant Foods Hum Nutr. 75(1):33–40. doi: 10.1007/s11130-019-00781-3.
  • Gnocchi D, Del Coco L, Girelli CR, Castellaneta F, Cesari G, Sabbà C, Fanizzi FP, Mazzocca A. 2021. 1H-NMR metabolomics reveals a multitarget action of Crithmum maritimum ethyl acetate extract in inhibiting hepatocellular carcinoma cell growth. Sci Rep. 11(1):1259. doi: 10.1038/s41598-020-78867-1.
  • Gnocchi D, Sabbà C, Mazzocca A. 2022. The edible plant Crithmum maritimum shows nutraceutical properties by targeting energy metabolism in hepatic cancer. Plant Foods Hum Nutr. 77(3):481–483. doi: 10.1007/s11130-022-00986-z.
  • Gnocchi D, Sabbà C, Mazzocca A. 2023. Crithmum maritimum improves sorafenib sensitivity by decreasing lactic acid fermentation and inducing a pro-hepatocyte marker profile in hepatocellular carcinoma. Plant Foods Hum Nutr. 78(1):230–232. doi: 10.1007/s11130-022-01037-3.
  • Gouvea DR, Buqui GA, Lopes JLC, Diniz A, Lopes NP. 2017. An UPLC-MS/MS method for determination of vicenin-2 and lychnopholic acid in rat plasma and its application to a pharmacokinetic study. J Braz Chem Soc. 28:427–434. doi: 10.21577/0103-5053.20160249.
  • Granato D, do Prado-Silva L, Alvarenga VO, Zielinski AAF, Bataglion GA, de Morais DR, Eberlin MN, Sant’Ana A de S. 2016. Characterization of binary and ternary mixtures of green, white and black tea extracts by electrospray ionization mass spectrometry and modeling of their in vitro antibacterial activity. LWT – Food Sci Technol. 65:414–420. doi: 10.1016/j.lwt.2015.08.037.
  • Güçlü-Üstündağ Ö, Mazza G. 2007. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47(3):231–258. doi: 10.1080/10408390600698197.
  • Han X, Shen T, Lou H. 2007. Dietary polyphenols and their biological significance. Int J Mol Sci. 8(9):950–988. doi: 10.3390/i8090950.
  • Jaiswal R, Müller H, Müller A, Karar MGE, Kuhnert N. 2014. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. Phytochemistry. 108:252–263. doi: 10.1016/j.phytochem.2014.08.023.
  • Jesionek W, Majer-Dziedzic B, Choma IM. 2015. Separation, identification, and investigation of antioxidant ability of plant extract components using TLC, LC-MS, and TLC-DPPH•. J Liq Chromatogr Relat Technol. 38(11):1147–1153. doi: 10.1080/10826076.2015.1028295.
  • Kachlicki P, Piasecka A, Stobiecki M, Marczak Ł. 2016. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules. 21(11):1494. doi: 10.3390/molecules21111494.
  • Kothari D, Lee W, Do Jung ES, Niu KM, Lee CH, Kim SK. 2020. Controlled fermentation using autochthonous Lactobacillus plantarum improves antimicrobial potential of Chinese chives against poultry pathogens. Antibiotics. 9(7):386. doi: 10.3390/antibiotics9070386.
  • Kumar K, Srivastav S, Sharanagat VS. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem. 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Li J, Zhang S, Zhang M, Sun B. 2019. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: box–Behnken design optimization. J Food Sci Technol. 56(11):4879–4890. doi: 10.1007/s13197-019-03958-5.
  • Liu J, Henkel T. 2002. Traditional Chinese Medicine (TCM): are polyphenols and saponins the key ingredients triggering biological activities? Curr Med Chem. 9(15):1483–1485. doi: 10.2174/0929867023369709.
  • Lu H, Tian Z, Cui Y, Liu Z, Ma X. 2020. Chlorogenic acid: a comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr Rev Food Sci Food Saf. 19(6):3130–3158. doi: 10.1111/1541-4337.12620.
  • Martins-Noguerol R, Matías L, Pérez-Ramos IM, Moreira X, Muñoz-Vallés S, Mancilla-Leytón JM, Francisco M, García-González A, DeAndrés-Gil C, Martínez-Force E, et al. 2022. Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. J Food Compos Anal. 106:104266.,. doi: 10.1016/j.jfca.2021.104266.
  • Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A. 2008. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom. 22(2):75–83. doi: 10.1002/rcm.3331.
  • Meot-Duros L, Magné C. 2009. Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem. 47(1):37–41. doi: 10.1016/j.plaphy.2008.09.006.
  • Mhlongo MI, Piater LA, Steenkamp PA, Madala NE, Dubery IA. 2015. Metabolomic fingerprinting of primed tobacco cells provide the first evidence for the biological origin of cis-chlorogenic acid. Biotechnol Lett. 37(1):205–209. doi: 10.1007/s10529-014-1645-8.
  • Nabet N, Boudries H, Chougui N, Loupassaki S, Souagui S, Burló F, Hernández F, Carbonell-Barrachina ÁA, Madani K, Larbat R. 2017. Biological activities and secondary compound composition from Crithmum maritimum aerial parts. Int J Food Prop. 20(8):1843–1855. doi: 10.1080/10942912.2016.1222541.
  • Najjaa H, Abdelkarim BA, Doria E, Boubakri A, Trabelsi N, Falleh H, Tlili H, Neffati M. 2020. Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. EuroBiotech J. 4(2):104–112. doi: 10.2478/ebtj-2020-0012.
  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, et al. 2018. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother. 97:67–74. doi: 10.1016/j.biopha.2017.10.064.
  • Pereira CG, Barreira L, da Rosa Neng N, Nogueira JMF, Marques C, Santos TF, Varela J, Custódio L. 2017. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: in vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem Toxicol. 107(Pt B):581–589. doi: 10.1016/j.fct.2017.04.018.
  • Pferschy-Wenzig EM, Bauer R. 2015. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 52(Pt B):344–362. doi: 10.1016/j.yebeh.2015.05.037.
  • Piatti D, Angeloni S, Maggi F, Caprioli G, Ricciutelli M, Arnoldi L, Bosisio S, Mombelli G, Drenaggi E, Sagratini G. 2023. Comprehensive characterization of phytochemicals in edible sea fennel (Crithmum maritimum L., Apiaceae) grown in central Italy. J Food Compos Anal. 115:104884. doi: 10.1016/j.jfca.2022.104884.
  • Pietrzak W, Nowak R, Olech M. 2014. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chem Pap. 68:976–982.
  • Repajić M, Cegledi E, Kruk V, Pedisić S, Çinar F, Kovačević DB, Žutić I, Dragović-Uzelac V. 2020. Accelerated solvent extraction as a green tool for the recovery of polyphenols and pigments from wild nettle leaves. Processes. 8(7):803. doi: 10.3390/pr8070803.
  • Rodrigues MJ, Soszynski A, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L. 2015. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind Crops Prod. 77:315–322. doi: 10.1016/j.indcrop.2015.08.061.
  • Sánchez-Faure A, Calvo MM, Pérez-Jiménez J, Martín-Diana AB, Rico D, Montero MP, Gómez-Guillén M del C, López-Caballero ME, Martínez-Alvarez O. 2020. Exploring the potential of common ice plant, seaside Arrowgrass and sea fennel as edible halophytic plants. Food Res Int. 137:109613. doi: 10.1016/j.foodres.2020.109613.
  • Serag A, Baky MH, Döll S, Farag MA. 2020. UHPLC-MS metabolome based classification of umbelliferous fruit taxa: a prospect for phyto-equivalency of its different accessions and in response to roasting. RSC Adv. 10(1):76–85. doi: 10.1039/c9ra07841j.
  • Souid A, Croce CM, Della Frassinetti S, Gabriele M, Pozzo L, Ciardi M, Abdelly C, Hamed K, Ben Magné C, Longo V, et al. 2021. Nutraceutical potential of leaf hydro-ethanolic extract of the edible halophyte Crithmum maritimum L. Molecules. 26(17):5380. doi: 10.3390/molecules26175380.
  • Souid A, Croce CM, Della Pozzo L, Ciardi M, Giorgetti L, Gervasi PG, Abdelly C, Magné C, Hamed K, Ben Longo V, et al. 2020. Antioxidant properties and hepatoprotective effect of the edible halophyte Crithmum maritimum L. against carbon tetrachloride-induced liver injury in rats. Eur Food Res Technol. 246(7):1393–1403. doi: 10.1007/s00217-020-03498-9.
  • Sparg SG, Light ME, Van Staden J. 2004. Biological activities and distribution of plant saponins. J Ethnopharmacol. 94(2–3):219–243. doi: 10.1016/j.jep.2004.05.016.
  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, et al. 2007. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 3(3):211–221. doi: 10.1007/s11306-007-0082-2.
  • Sun H, Ge X, Lv Y, Wang A. 2012. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A. 1237:1–23. doi: 10.1016/j.chroma.2012.03.003.
  • Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, Viola R, Mattivi F. 2012. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J Agric Food Chem. 60(36):8831–8840. doi: 10.1021/jf2051569.
  • Vukics V, Guttman A. 2010. Structural characterization of flavonoid glycosides by multi‐stage mass spectrometry. Mass Spectrom Rev. 29(1):1–16. doi: 10.1002/mas.20212.
  • Wagner H, Bladt S. 1996. Plant drug analysis: a thin layer chromatography Atlas. Berlin: Springer Science & Business Media.
  • Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 17(6):300–312. doi: 10.1016/j.tifs.2005.12.004.
  • Zafeiropoulou V, Tomou E-M, Ioannidou O, Karioti A, Skaltsa H. 2020. Sea fennel: phytochemical analysis of Greek wild and cultivated Crithmum maritimum L. populations, based on HPLC-PDA-MS and NMR methods. J Pharmacogn Phytochem. 9:998–1004.