1,081
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Nardostachys jatamansi and levodopa combination alleviates Parkinson’s disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways

, , , , , , & show all
Pages 1175-1185 | Received 22 Sep 2022, Accepted 29 Jul 2023, Published online: 09 Aug 2023

References

  • Arab HH, Safar MM, Shahin NN. 2021. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci. 12(4):689–703. doi:10.1021/acschemneuro.0c00722.
  • Astradsson A, Jenkins BG, Choi JK, Hallett PJ, Levesque MA, McDowell JS, Brownell AL, Spealman RD, Isacson O. 2009. The blood-brain barrier is intact after levodopa-induced dyskinesias in Parkinsonian primates–evidence from in vivo neuroimaging studies. Neurobiol Dis. 35(3):348–351. doi:10.1016/j.nbd.2009.05.018.
  • Bezard E. 2013. Experimental reappraisal of continuous dopaminergic stimulation against L-dopa-induced dyskinesia. Mov Disord. 28(8):1021–1022. doi:10.1002/mds.25251.
  • Bhakkiyalakshmi E, Dineshkumar K, Karthik S, Sireesh D, Hopper W, Paulmurugan R, Ramkumar KM. 2016. Pterostilbene-mediated Nrf2 activation: mechanistic insights on Keap1: nrf2 interface. Bioorg Med Chem. 24(16):3378–3386. doi:10.1016/j.bmc.2016.05.011.
  • Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H. 2020. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation. 17(1):166–178. doi:10.1186/s12974-020-01836-y.
  • Bian LH, Yao ZW, Wang ZY, Wang XM, Li QY, Yang X, Li JY, Wei XJ, Wan GH, Wang YQ, et al. 2022. Nardosinone regulates the slc38a2 gene to alleviate Parkinson’s symptoms in rats through the GABAergic synaptic and cAMP pathways. Biomed Pharmacother. 153:113269. doi:10.1016/j.biopha.2022.113269.
  • Bian LH, Yao ZW, Zhao CB, Li QY, Shi JL, Guo JY. 2021. Nardosinone alleviates Parkinson’s disease symptoms in mice by regulating dopamine D2 receptor. Evid Based Complement Alternat Med. 2021:6686965. doi:10.1155/2021/6686965.
  • Bu XL, Wang X, Xiang Y, Shen LL, Wang QH, Liu YH, Jiao SS, Wang YR, Cao HY, Yi X, et al. 2015. The association between infectious burden and Parkinson’s disease: a case-control study. Parkinsonism Relat Disord. 21(8):877–881. doi:10.1016/j.parkreldis.2015.05.015.
  • Cuevas C, Huenchuguala S, Muñoz P, Villa M, Paris I, Mannervik B, Segura-Aguilar J. 2015. Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotox Res. 27(3):217–228. doi:10.1007/s12640-014-9500-1.
  • de Araújo DP, Nogueira PCN, Santos ADC, Costa RO, de Lucena JD, Jataí Gadelha-Filho CV, Lima FAV, Neves KRT, Leal L, Silveira ER, et al. 2018. Aspidosperma pyrifolium Mart: neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson’s disease model in rats. J Pharm Pharmacol. 70(6):787–796. doi:10.1111/jphp.12866.
  • de Farias CC, Maes M, Bonifácio KL, Bortolasci CC, de Souza Nogueira A, Brinholi FF, Matsumoto AK, do Nascimento MA, de Melo LB, Nixdorf SL, et al. 2016. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: disease and staging biomarkers and new drug targets. Neurosci Lett. 617:66–71. doi:10.1016/j.neulet.2016.02.011.
  • Fan Z, Liang Z, Yang H, Pan Y, Zheng Y, Wang X. 2017. Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia. J Neuroinflammation. 14(1):256–267. doi:10.1186/s12974-017-1036-x.
  • Huang L, Deng M, Zhang S, Lu S, Gui X, Fang Y. 2017. β-Asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson’s rat by enhancing dopa decarboxylase activity. Biomed Pharmacother. 94:666–678. doi:10.1016/j.biopha.2017.07.125.
  • Klein A, Gidyk DC, Shriner AM, Colwell KL, Tatton NA, Tatton WG, Metz GA. 2011. Dose-dependent loss of motor function after unilateral medial forebrain bundle rotenone lesion in rats: a cautionary note. Behav Brain Res. 222(1):33–42. doi:10.1016/j.bbr.2011.03.018.
  • Kobayashi M, Yamamoto M. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 46:113–140. doi:10.1016/j.advenzreg.2006.01.007.
  • Kwon DK, Kwatra M, Wang J, Ko HS. 2022. Levodopa-induced dyskinesia in Parkinson’s disease: pathogenesis and emerging treatment strategies. Cells. 11:3736. doi:10.3390/cells11233736.
  • Li ZH, Li W, Shi JL, Tang MK. 2014. Nardosinone improves the proliferation, migration and selective differentiation of mouse embryonic neural stem cells. PLoS One. 9(3):e91260. doi:10.1371/journal.pone.0091260.
  • Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, Li YL, Ying CZ, Song Z, Tian J, et al. 2022. Quercetin protects against MPP+/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev. 2022:7769355.
  • Liu X, Wei F, Liu H, Zhao S, Du G, Qin X. 2021. Integrating hippocampal metabolomics and network pharmacology deciphers the antidepressant mechanisms of Xiaoyaosan. J Ethnopharmacol. 268:113549. doi:10.1016/j.jep.2020.113549.
  • Li JY, Wei XJ, Wan GH, Yang X, Yu JH, Liu JF, Jin ZX, Wang YQ, Lyu Y, Shi JL. 2022. [Mechanism of Nardostachys jatamansi on levodopa-induced dyskinesia in rats based on Nrf2/D1R-ERK signaling pathway]. Chinese Trad Herbal Drugs. 53:134–142.
  • Lyle N, Gomes A, Sur T, Munshi S, Paul S, Chatterjee S, Bhattacharyya D. 2009. The role of antioxidant properties of Nardostachys jatamansi in alleviation of the symptoms of the chronic fatigue syndrome. Behav Brain Res. 202(2):285–290. doi:10.1016/j.bbr.2009.04.005.
  • Ma Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. doi:10.1146/annurev-pharmtox-011112-140320.
  • Martinez EM, Young AL, Patankar YR, Berwin BL, Wang L, von Herrmann KM, Weier JM, Havrda MC. 2017. Editor’s highlight: nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol Sci. 159(1):64–75. doi:10.1093/toxsci/kfx117.
  • Maturana MG, Pinheiro AS, de Souza TL, Follmer C. 2015. Unveiling the role of the pesticides paraquat and rotenone on α-synuclein fibrillation in vitro. Neurotoxicology. 46:35–43. doi:10.1016/j.neuro.2014.11.006.
  • McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG. 2006. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 26(37):9365–9375. doi:10.1523/JNEUROSCI.1504-06.2006.
  • Nam HY, Nam JH, Yoon G, Lee JY, Nam Y, Kang HJ, Cho HJ, Kim J, Hoe HS. 2018. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflammation. 15(1):271. doi:10.1186/s12974-018-1308-0.
  • Nevalainen N, Lundblad M, Gerhardt GA, Strömberg I. 2013. Striatal glutamate release in L-DOPA-induced dyskinetic animals. PLoS One. 8(2):e55706. doi:10.1371/journal.pone.0055706.
  • Nuvolone M, Sorce S, Schwarz P, Aguzzi A. 2015. Prion pathogenesis in the absence of NLRP3/ASC inflammasomes. PLoS One. 10(2):e0117208. doi:10.1371/journal.pone.0117208.
  • Olanow CW. 2015. Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov Disord. 30(1):37–44. doi:10.1002/mds.26119.
  • Sayed AS, El Sayed NS, Budzyńska B, Skalicka-Woźniak K, Ahmed MK, Kandil EA. 2022. Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson’s disease model. Life Sci. 310:121129. doi:10.1016/j.lfs.2022.121129.
  • Shin JY, Bae GS, Choi SB, Jo IJ, Kim DG, Lee DS, An RB, Oh H, Kim YC, Shin YK, et al. 2015. Anti-inflammatory effect of desoxo-narchinol-A isolated from Nardostachys jatamansi against lipopolysaccharide. Int Immunopharmacol. 29(2):730–738. doi:10.1016/j.intimp.2015.09.002.
  • Stansley BJ, Yamamoto BK. 2013. L-DOPA-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology. 67:243–251. doi:10.1016/j.neuropharm.2012.11.010.
  • Todorovic M, Wood SA, Mellick GD. 2016. Nrf2: a modulator of Parkinson’s disease? J Neural Transm (Vienna). 123(6):611–619. doi:10.1007/s00702-016-1563-0.
  • Toulouse A, Sullivan AM. 2008. Progress in Parkinson’s disease-where do we stand? Prog Neurobiol. 85(4):376–392. doi:10.1016/j.pneurobio.2008.05.003.
  • Wan GH, Wei XJ, Li JY, Yang X, Yu JH, Liu JF, Wang YQ, Lyu Y, Jin ZX, Shi JL. 2022. Effects of Nardostachys jatamansi on gut microbiota of rats with Parkinson’s disease. China J Chinese Materia Med. 47:499–510.
  • Wijeyekoon RS, Moore SF, Farrell K, Breen DP, Barker RA, Williams-Gray CH. 2020. Cerebrospinal fluid cytokines and neurodegeneration-associated proteins in Parkinson’s disease. Mov Disord. 35(6):1062–1066. doi:10.1002/mds.28015.
  • Yan J, Li J, Zhang L, Sun Y, Jiang J, Huang Y, Xu H, Jiang H, Hu R. 2018. Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radic Biol Med. 121:78–85. doi:10.1016/j.freeradbiomed.2018.04.557.
  • Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. 2016. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production. Exp Cell Res. 340(2):315–326. doi:10.1016/j.yexcr.2015.10.026.
  • Zhang X, Liu Y, Deng G, Huang B, Kai G, Chen K, Li J. 2021. A purified biflavonoid extract from Selaginella moellendorffii alleviates gout arthritis via NLRP3/ASC/Caspase-1 axis suppression. Front Pharmacol. 12:676297. doi:10.3389/fphar.2021.676297.
  • Zhang W, Tao WW, Zhou J, Wu CY, Long F, Shen H, Zhu H, Mao Q, Xu J, Li SL, et al. 2021. Structural analogues in herbal medicine ginseng hit a shared target to achieve cumulative bioactivity. Commun Biol. 4(1):549–562. doi:10.1038/s42003-021-02084-3.
  • Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L. 2019. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res. 150:104538. doi:10.1016/j.phrs.2019.104538.