1,522
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Integrating serum metabolomics and network analysis to explore the antidepressant activity of crocin in rats with chronic unexpected mild stress-induced depression

, , , , , , , , , , & show all
Pages 1414-1430 | Received 23 Feb 2023, Accepted 04 Aug 2023, Published online: 09 Sep 2023

References

  • Abel EL. 1991. Behavior and corticosteroid response of maudsley reactive and nonreactive rats in the open field and forced swimming test. Physiol Behav. 50(1):151–153. doi: 10.1016/0031-9384(91)90513-n.
  • Abuelezz SA, Hendawy N, Magdy Y. 2017. Targeting oxidative stress, cytokines and serotonin interactions via indoleamine 2, 3 dioxygenase by coenzyme Q10: role in suppressing depressive like behavior in rats. J Neuroimmune Pharmacol. 12(2):277–291. doi: 10.1007/s11481-016-9712-7.
  • Albrakati A, Alsharif KF, Al Omairi NE, Alsanie WF, Almalki A, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE, et al. 2021. Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities. Int J Nanomedicine. 16:8447–8464. doi: 10.2147/IJN.S323436.
  • Červeňová J. 2019. Combination of mirtazapine and paroxetine: possible clinically demonstrated interaction. Cas Lek Cesk. 158:310–313.
  • Chen S, Zhou M, Zhao X, Han Y, Huang Y, Zhang L, Wang J, Xiao X, Li P. 2022. Metabolomics coupled with network pharmacology study on the protective effect of Keguan-1 granules in LPS-induced acute lung injury. Pharm Biol. 60(1):525–534. doi: 10.1080/13880209.2022.2040544.
  • Chi X, Xue X, Pan J, Wu J, Shi H, Wang Y, Lu Y, Zhang Z, Ma K. 2022. Mechanism of lily bulb and Rehmannia decoction in the treatment of lipopolysaccharide-induced depression-like rats based on metabolomics study and network pharmacology. Pharm Biol. 60(1):1850–1864. doi: 10.1080/13880209.2022.2121843.
  • Correia AS, Vale N. 2022. Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci. 23:8493. doi: 10.3390/ijms23158493.
  • Detke MJ, Rickels M, Lucki I. 1995. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl). 121(1):66–72. doi: 10.1007/BF02245592.
  • Geng C, Hao G, Yi Q, Guo Y, Chen D, Han W, Zhang J, Yang M, Jiang P. 2020. The impact of Dl-3-n-butylphthalide on the lipidomics of the hippocampus in a rat model of lipopolysaccharide-induced depression. Prostaglandins Other Lipid Mediat. 150:106464. doi: 10.1016/j.prostaglandins.2020.106464.
  • Gu X, Zhang G, Wang Q, Song J, Li Y, Xia C, Zhang T, Yang L, Sun J, Zhou M. 2022. Integrated network pharmacology and hepatic metabolomics to reveal the mechanism of Acanthopanax senticosus against major depressive disorder. Front Cell Dev Biol. 10:900637. doi: 10.3389/fcell.2022.900637.
  • Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. 2005. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 255(6):381–386. doi: 10.1007/s00406-005-0578-6.
  • Hall LS, Adams MJ, Arnau-Soler A, Clarke TK, Howard DM, Zeng Y, Davies G, Hagenaars SP, Maria Fernandez-Pujals A, Gibson J, et al. 2018. Genome-wide meta-analyses of stratified depression in generation Scotland and UK Biobank. Transl Psychiatry. 8(1):9. doi: 10.1038/s41398-017-0034-1.
  • Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. 2008. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 33(6):693–710. doi: 10.1016/j.psyneuen.2008.03.008.
  • Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. 2019. How important is tryptophan in human health. Crit Rev Food Sci Nutr. 59(1):72–88. doi: 10.1080/10408398.2017.1357534.
  • Kao WT, Chang CL, Lung FW. 2018. 5-HTT mRNA level as a potential biomarker of treatment response in patients with major depression in a clinical trial. J Affect Disord. 238:597–608. doi: 10.1016/j.jad.2018.06.035.
  • Kuniishi H, Ichisaka S, Yamamoto M, Ikubo N, Matsuda S, Futora E, Harada R, Ishihara K, Hata Y. 2017. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats. Neurosci Res. 123:27–35. doi: 10.1016/j.neures.2017.04.012.
  • Ledesma MD, Martin MG, Dotti CG. 2012. Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res. 51(1):23–35. doi:10.1016/j.plipres.2011.11.004.22142854.
  • Lei C, Chen Z, Fan L, Xue Z, Chen J, Wang X, Huang Z, Men Y, Yu M, Liu Y, et al. 2022. Integrating metabolomics and network analysis for exploring the mechanism underlying the antidepressant activity of paeoniflorin in rats with CUMS-induced depression. Front Pharmacol. 13:904190. doi: 10.3389/fphar.2022.904190.
  • Li H, Xiang Y, Zhu Z, Wang W, Jiang Z, Zhao M, Cheng S, Pan F, Liu D, Ho R, et al. 2021. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation. 18(1):254. doi: 10.1186/s12974-021-02303-y.
  • Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, Ren F, Li Y, Yu Y, Duan W, et al. 2022. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol. 59(5):2855–2873. doi: 10.1007/s12035-022-02740-7.
  • Lin S, Li Q, Xu Z, Chen Z, Tao Y, Tong Y, Wang T, Chen S, Wang P. 2022. Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology (Berl). 239(11):3657–3677. doi: 10.1007/s00213-022-06239-w.
  • Liu H, Jiang J, Zhao L. 2019. Protein arginine methyltransferase-1 deficiency restrains depression-like behavior of mice by inhibiting inflammation and oxidative stress via Nrf-2. Biochem Biophys Res Commun. 518(3):430–437. doi: 10.1016/j.bbrc.2019.08.032.
  • Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, Chen H, Zhu DY, Zhou QG. 2018. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc. 13(7):1686–1698. doi: 10.1038/s41596-018-0011-z.
  • Liu T, Song Y, Hu A. 2021. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res. 82(4):494–502. doi: 10.1002/ddr.21783.
  • Meyer JH, McMain S, Kennedy SH, Korman L, Brown GM, DaSilva JN, Wilson AA, Blak T, Eynan-Harvey R, Goulding VS, et al. 2003. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry. 160(1):90–99. doi: 10.1176/appi.ajp.160.1.90.
  • Nadeau BG, Marchant EG, Amir S, Mistlberger RE. 2022. Thermoregulatory significance of immobility in the forced swim test. Physiol Behav. 247:113709. doi: 10.1016/j.physbeh.2022.113709.
  • Nair A, Morsy MA, Jacob S. 2018. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 79(8):373–382. doi: 10.1002/ddr.21461.
  • Nemeroff CB. 2002. Recent advances in the neurobiology of depression. Psychopharmacol Bull. 36 (2):6–23.
  • Peng GJ, Tian JS, Gao XX, Zhou YZ, Qin XM. 2015. Research on the pathological mechanism and drug treatment mechanism of depression. Curr Neuropharmacol. 13(4):514–523. doi: 10.2174/1570159x1304150831120428.
  • Pinto B, Conde T, Domingues I, Domingues MR. 2022. Adaptation of lipid profiling in depression disease and treatment: a Critical Review. Int J Mol Sci. 23:2032. doi: 10.3390/ijms23042032.
  • Salek R, Dehghani M, Mohajeri SA, Talaei A, Fanipakdel A, Javadinia SA. 2021. Amelioration of anxiety, depression, and chemotherapy related toxicity after crocin administration during chemotherapy of breast cancer: a double blind, randomized clinical trial. Phytother Res. 35(9):5143–5153. doi: 10.1002/ptr.7180.
  • Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP. 2017. Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev. 76(Pt B):336–362. doi: 10.1016/j.neubiorev.2016.06.002.27317860.
  • Shen F, Xie P, Li C, Bian Z, Wang X, Peng D, Zhu G. 2022. Polysaccharides from Polygonatum cyrtonema Hua reduce depression-like behavior in mice by inhibiting oxidative stress-Calpain-1-NLRP3 signaling axis. Oxid Med Cell Longev. 2022:2566917. doi: 10.1155/2022/2566917.
  • Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. 2022. Anti-depressant properties of crocin molecules in saffron. Molecules. 27:2076. doi: 10.3390/molecules27072076.
  • Song C, Manku MS, Horrobin DF. 2008. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr. 138(5):954–963. doi: 10.1093/jn/138.5.954.
  • Spulber S, Conti M, Elberling F, Raciti M, Borroto-Escuela DO, Fuxe K, Ceccatelli S. 2019. Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Transl Psychiatry. 9(1):263. doi: 10.1038/s41398-019-0594-3.
  • Stachowicz K, Sowa-Kućma M. 2022. The treatment of depression - searching for new ideas. Front Pharmacol. 13:988648. doi: 10.3389/fphar.2022.988648.
  • Talaei A, Hassanpour Moghadam M, Sajadi Tabassi SA, Mohajeri SA. 2015. Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: a randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord. 174:51–56. doi: 10.1016/j.jad.2014.11.035.
  • Tang Y, Su H, Wang H, Lu F, Nie K, Wang Z, Huang W, Dong H. 2021. The effect and mechanism of Jiao-tai-wan in the treatment of diabetes mellitus with depression based on network pharmacology and experimental analysis. Mol Med. 27(1):154. doi: 10.1186/s10020-021-00414-z.
  • Thanacoody HK, Thomas SH. 2005. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol Rev. 24(3):205–214. doi: 10.2165/00139709-200524030-00013.
  • Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM. Jr. 2002. Lipid rafts in neuronal signaling and function. Trends Neurosci. 25(8):412–417. doi: 10.1016/s0166-2236(02)02215-4.
  • Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. 2014. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. Daru. 22:16.
  • Verharen J, de Jong JW, Zhu Y, Lammel S. 2023. A computational analysis of mouse behavior in the sucrose preference test. Nat Commun. 14(1):2419. doi: 10.1038/s41467-023-38028-0.
  • Wu GF, Ren S, Tang RY, Xu C, Zhou JQ, Lin SM, Feng Y, Yang QH, Hu JM, Yang JC. 2017. Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci Rep. 7(1):4989. doi: 10.1038/s41598-017-05051-3.
  • Xie J, Wu WT, Chen JJ, Zhong Q, Wu D, Niu L, Wang S, Zeng Y, Wang Y. 2023. Tryptophan metabolism as bridge between gut microbiota and brain in chronic social defeat stress-induced depression mice. Front Cell Infect Microbiol. 13:1121445. doi: 10.3389/fcimb.2023.1121445.
  • Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ, et al. 2021. Antidepressant mechanism of traditional Chinese medicine formula Xiaoyaosan in CUMS-induced depressed mouse model via RIPK1-RIPK3-MLKL mediated necroptosis based on network pharmacology analysis. Front Pharmacol. 12:773562. doi: 10.3389/fphar.2021.773562.
  • Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. 2018. Herbal medicine for depression and anxiety: a systematic review with assessment of potential psycho-oncologic relevance. Phytother Res. 32(5):865–891. doi: 10.1002/ptr.6033.
  • Yu C, Fu J, Guo L, Yu M, Yu D. 2022. Integrating metabolomics and network pharmacology to explore the protective effect of ginsenoside Re against radiotherapy injury in mice. Evid Based Complement Alternat Med. 2022:5436979.
  • Yuan N, Gong L, Tang K, He L, Hao W, Li X, Ma Q, Chen J. 2020. An integrated pharmacology-based analysis for antidepressant mechanism of Chinese herbal formula Xiao-Yao-San. Front Pharmacol. 11:284. doi: 10.3389/fphar.2020.00284.
  • Zemanova N, Anzenbacher P, Anzenbacherova E. 2022. The role of cytochromes P450 in the metabolism of selected antidepressants and anxiolytics under psychological stress. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 166(2):140–149. doi: 10.5507/bp.2022.019.
  • Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y. 2022. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD(+)-SIRT1 pathway in mice. Neurochem Int. 157:105343. doi: 10.1016/j.neuint.2022.105343.
  • Zhang M, Liu Y, Zhao M, Tang W, Wang X, Dong Z, Yu S. 2017. Depression and anxiety behaviour in a rat model of chronic migraine. J Headache Pain. 18(1):27. doi: 10.1186/s10194-017-0736-z.
  • Zhang Y, Liu X, Long J, Cheng X, Wang X, Feng X. 2022. Exploring active compounds and mechanisms of angong Niuhuang Wan on ischemic stroke based on network pharmacology and molecular docking. Evid Based Complement Alternat Med. 2022:2443615. doi: 10.1155/2022/2443615.
  • Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, et al. 2008. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22(5):640–653. doi: 10.1101/gad.1632608.
  • Zhou X, Wang J, Lu Y, Chen C, Hu Y, Liu P, Dong X. 2020. Anti-depressive effects of Kai-Xin-San on lipid metabolism in depressed patients and CUMS rats using metabolomic analysis. J Ethnopharmacol. 252:112615. doi: 10.1016/j.jep.2020.112615.