71
Views
0
CrossRef citations to date
0
Altmetric
Articles

An exact solution for geophysical internal waves with underlying current in modified equatorial β -plane approximationFootnote*

&
Pages 579-603 | Received 10 Sep 2018, Accepted 23 May 2019, Published online: 09 Jul 2019

References

  • A. Bennett, Lagranian Fluid Dynamics, Cambridge University Press, Cambridge (2006).
  • B. Cushman-Rosin, J.-M. Beckers, Introduction to Geophysical Fluid Dynamic, Academic Press, New York (2011).
  • A. Constantin, On the deep water wave motion, J. Phys. A Math. Gen. 7 (2001) 1405–1417. doi: 10.1088/0305-4470/34/7/313
  • A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics. 81 (2011).
  • A. Constantin, Edge wave along a sloping beach, J. Phys. A Math. Gen. 45 (2001) 9723–9731. doi: 10.1088/0305-4470/34/45/311
  • A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans 117 (2012) C05029. doi: 10.1029/2012JC007879
  • A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr. 43 (2013) 165–175. doi: 10.1175/JPO-D-12-062.1
  • A. Constantin, On the modelling of equatorial waves, Geophy. Res. Lett. 39 (2012) L05602. doi: 10.1029/2012GL051169
  • A. Constantin, Some nonlinear, Equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr. 44 (2014) 781–789. doi: 10.1175/JPO-D-13-0174.1
  • A. Constantin, P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.Oceans. 118 (2013) 1–9. doi: 10.1002/jgrc.20219
  • A. Constantin, R.S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys.Fluid Dyn. 109 (2015) 311–358. doi: 10.1080/03091929.2015.1066785
  • A. Constantin, R.S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr. 46 (2016) 1935–1945. doi: 10.1175/JPO-D-15-0205.1
  • A. Constantin, R.S. Johnson, A nonlinear three-dimensional model for ocean flows motivated by some observations of the Pacific equatorial under current and thermocline, Phys. Fluids. 29 (2017) 056604. doi: 10.1063/1.4984001
  • M. Ehrnström, J. Escher, B.-V. Matioc, Two-dimensional steady edge waves. Part I: Periodic waves, Wave Motion. 46 (2009) 363–371. doi: 10.1016/j.wavemoti.2009.06.002
  • L.L. Fan, H.J. Gao, Q.K. Xiao, An exact solution for geophysical trapped waves in the presence of an underlying current, Dynamics Of PDE. 15 (2018) 201–204.
  • A.V. Fedorov, J.N. Brown, Equatorial Waves, Encyclopedia of Ocean Science, 2nd edn.(2009) 3679–3695.
  • M.C. Gregg, T.B. Sanford, D.P. Winkel, Reduced mixing from the breaking of internal waves in equatorial waters, Nature. 422 (2003) 513–515. doi: 10.1038/nature01507
  • F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys. 32 (1809) 412–445. doi: 10.1002/andp.18090320808
  • F. Genoud, D. Henry, Instability of Equatorial water waves with an underlying current, J. Math. Fluid Mech. 4 (2014) 661–667. doi: 10.1007/s00021-014-0175-4
  • H. van Haren, Sharp near-equatorial transitions in inertial motions and deep-ocean stepformation, Geophysical Research Letters. 32 (2005) 1–4.
  • D. Henry, On Gerstner’s water waves, J. Nonlinear Math. Phys. 15 (2008) 87–95. doi: 10.2991/jnmp.2008.15.S2.7
  • D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B/Fluids. 38 (2013) 18–21. doi: 10.1016/j.euromechflu.2012.10.001
  • D. Henry, Equatorially trapped nonlinear water wave in β -plane approximation with centripetal forces, J. Fluid. Mech. 804 (2016) Article(R1). doi: 10.1017/jfm.2016.544
  • D. Henry, Internal Equatorial water waves in the f-plane, J. Nonlinear Math. Phys. 22 (2015) 499–506. doi: 10.1080/14029251.2015.1113046
  • D. Henry, Exact Equatorial water waves in the f-plane, Nonlinear Anal. Real World Appl. 28 (2016) 284–289. doi: 10.1016/j.nonrwa.2015.10.003
  • D. Henry, A modified equatorial β -plane approximation modelling nonlinear wave-current interactions, J. Differential Equations. 263 (2017) 2554–2566. doi: 10.1016/j.jde.2017.04.007
  • H.-C. Hsu, An exact solution for equatorially waves, Monatsh. Math. 176 (2015) 143–152. doi: 10.1007/s00605-014-0618-2
  • H.-C. Hsu, Some nonlinear internal Equatorial flows, Nonlinear Anal. Real World Appl. 18 (2014) 69–74. doi: 10.1016/j.nonrwa.2013.12.011
  • H.-C. Hsu, An exact solution for nonlinear internal Equatorial waves in the f-plane approximation, J. Math. Fluid. Mech. 16 (2014) 463–471. doi: 10.1007/s00021-014-0168-3
  • D. Henry, O.G. Mustafa, Existence of solution for a class of edge wave equations, Discret. Contin. Dyn. Syst. Ser.B. 6 (2008) 1113–1119.
  • D. Henry, H.-C. Hsu, Instabillity of internal Equatorial water waves in the f -plane. Discrete Contin. Dyn. Syst. Ser.A. 35 (2015) 909–916. doi: 10.3934/dcds.2015.35.909
  • D. Henry, S. Sastre-Gomez, Mean flow velocities and mass transport for Equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech. 18 (2016) 795–804. doi: 10.1007/s00021-016-0262-9
  • R.S. Johnson, Edge waves theories past and present, Philos. Trans. R. Soc. Lond. A. 365 (2007) 2359– 2376. doi: 10.1098/rsta.2007.2013
  • M.S. Longuet-Higgins, Mass transport in water waves, Philos. Trans. R. Soc. Lond. A. 245 (1953) 535– 581. doi: 10.1098/rsta.1953.0006
  • M.S. Longuet-Higgins, On the transport of mass by time-varying ocean currents, Deep Sea Res. 16 (1969) 431–447.
  • A.V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A. 45 (2012) 365501–365509. doi: 10.1088/1751-8113/45/36/365501
  • L.R.M. Maas, U. Harlander, Equatorial wave attractors and inertial oscillations, J. Fluid Mech. 570 (2007) 47–67. doi: 10.1017/S0022112006002904
  • A.J. Majda, X. Wang, Nonlinear Dynamics and StatisticalTheories for Basic Geophysical Flows, Cambridge University Press, Cambridge, U. K. (2006).
  • W.J.M. Rankine, On the exact form of waves near the surface of deep water,Philos. Trans. R. Soc. Lond. A. 153 (1863) 127–138. doi: 10.1098/rstl.1863.0006
  • A. Rabitti, L.R.M. Maas, Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell, J. Fluid Mech. 729 (2013) 445–470. doi: 10.1017/jfm.2013.310
  • A. Rodriguez-Sanjurjo, M. Kluczek, Mean flow properties for equatorially trapped internal water wave-current interactions, Appl. Anal. 96 (2017) 2333–2345. doi: 10.1080/00036811.2016.1221943
  • R. Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys. 18 (2011) 127–137. doi: 10.1142/S1402925111001210
  • A.R. Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Equatorially trapped internal water waves, Nonlinear Anal. 149 (2017) 156–164. doi: 10.1016/j.na.2016.10.022
  • G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.