177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Corrosion behaviour of magnesium–yttria composite sintered by microwave hybrid heating

, &
Pages 422-426 | Received 17 Apr 2017, Accepted 20 May 2017, Published online: 16 Jun 2017

References

  • Mordike BL, Ebert T. Magnesium properties – applications – potential. Mater Sci Eng A. 2001;302:37–45.10.1016/S0921-5093(00)01351-4
  • Zhang X, Liao L, Ma N, et al. Mechanical properties and damping capacity of magnesium matrix composites. Composites Part A. 2006;37:2011–2016.10.1016/j.compositesa.2005.12.007
  • Gao W, Liu H. A highly ductile magnesium alloy system. IOP Conference Series: Materials Science and Engineering, vol. 4; 2009. p. 1–7.
  • Hassan SF, Gupta M. Development and characterization of ductile Mg/Y2O3 nanocomposites. J Eng Mater Technol. 2007;129:462–467.10.1115/1.2744418
  • Anklekar RM, Agrawal DK, Roy R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall. 2001;44:355–362.10.1179/pom.2001.44.4.355
  • Sethi G, Upadhyaya A, Agrawal D. Microwave and conventional sintering of premixed and prealloyed Cu–12Sn bronze. Sci Sinter. 2003;35:49–65.10.2298/SOS0302049S
  • Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd. 2010;494:175–189.10.1016/j.jallcom.2010.01.068
  • Yang JH, Song KW, Lee YW, et al. Microwave process for sintering of uranium dioxide. J Nucl Mater. 2004;325:210–216.10.1016/j.jnucmat.2003.12.003
  • Wong WLE, Gupta M. Development of metallic materials using hybrid microwave assisted rapid sintering. Proc ASME Mater Div. 2005;100:453–459.
  • Akinwekomi AD, Law WC, Tang CY, et al. Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Composites Part B. 2016;93:302–309.10.1016/j.compositesb.2016.03.041
  • Wong WLE, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos Sci Technol. 2007;67:1541–1552.10.1016/j.compscitech.2006.07.015
  • Tun KS, Gupta M. Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3 nanocomposite. J Mater Sci. 2008;43:4503–4511.10.1007/s10853-008-2649-3
  • Tun KS, Gupta M. Development of magnesium/(yttria+nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Compd. 2009;487:76–82.10.1016/j.jallcom.2009.07.117
  • Seetharaman S, Subramanian J, Tun KS, et al. Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials. 2013;6:1940–1955.10.3390/ma6051940
  • Sankaranarayanan S, Hemanth Shankar V, Jayalakshmi S, et al. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J Alloys Compd. 2015;627:192–199.10.1016/j.jallcom.2014.12.009
  • Xiong G, Nie Y, Ji D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr Appl Phys. 2016;16:830–836.10.1016/j.cap.2016.05.004
  • Wan Y, Cui T, Li W, et al. Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater Des. 2016;99:521–527.10.1016/j.matdes.2016.03.096
  • Hassan SF, Tun KS, Gupta M. Effect of sintering techniques on the microstructure and tensile properties of nano-yttria particulates reinforced magnesium nanocomposites. J Alloys Compd. 2011;509:4341–4347.10.1016/j.jallcom.2011.01.064
  • Gupta M, Lane C, Lavernia EJ. Microstructure and properties of spray atomized and deposited Ai–7Si/SiCp metal matrix composites. Scr Metall Mater. 1992;26:825–830.10.1016/0956-716X(92)90446-L
  • Gupta M, Wong WLE. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater. 2005;52:479–483.10.1016/j.scriptamat.2004.11.006
  • Habibi MK, Paramsothy M, Hamouda AMS. Enhanced compressive response of hybrid Mg–CNT. J Mater Sci. 2011;46:4588–4597.
  • Rajkumar K, Aravindan S. Microwave sintering of copper-graphite composites. J Mater Process Technol. 2009;:5601–5605.10.1016/j.jmatprotec.2009.05.017
  • Garcés G, Rodríguez M, Pérez P, et al. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Mater Sci Eng A. 2006;419:357–364.10.1016/j.msea.2006.01.026
  • Manivannan S, Babu SPK, Sundarrajan S. Corrosion behavior of Mg–6Al–1Zn+XRE magnesium alloy with minor addition of yttrium. J Mater Eng Perform. 2015;24:1649–1655.10.1007/s11665-015-1432-2
  • Kumar NVR, Blandin JJ, Suery M, et al. Effect of alloying elements on the ignition resistance of magnesium alloys. Scr Mater. 2003;49:225–230.10.1016/S1359-6462(03)00263-X
  • Wang XM, Zeng XQ, Zhou Y, et al. Early oxidation behaviors of Mg–Y alloys at high temperatures. J Alloys Compd. 2008;460:368–374.10.1016/j.jallcom.2007.06.065
  • Li L, Nam ND. Effect of yttrium on corrosion behavior of extruded AZ61 Mg alloy. J Magnesium Alloys. 2016;4:44–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.