187
Views
10
CrossRef citations to date
0
Altmetric
Research Article

One-step microwave synthesis of Ag/ZnO microrods as photocatalysts

, , &
Pages 129-134 | Received 12 Jun 2017, Accepted 17 Oct 2017, Published online: 26 Oct 2017

References

  • Bizani E, Fytianos K, Poulios I, et al. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater. 2006;136:85–94.10.1016/j.jhazmat.2005.11.017
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96.10.1021/cr00033a004
  • Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44:2997–3027.10.1016/j.watres.2010.02.039
  • Jang YH, Kochuveedu ST, Cha M-A, et al. Synthesis and photocatalytic properties of hierarchical metal nanoparticles/ZnO thin films hetero nanostructures assisted by diblock copolymer inverse micellar nanotemplates. Colloid Interface Sci. 2010;345:125–130.10.1016/j.jcis.2010.01.040
  • Duan J, Liu X, Han Q, et al. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities. J Alloys Compd. 2011;509:9255–9263.10.1016/j.jallcom.2011.07.017
  • Tian C, Zhang Q, Wu A, et al. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun. 2012;48:2858–2860.10.1039/c2cc16434e
  • Lin D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers. Chem Mater. 2009;21:3479–3484.10.1021/cm900225p
  • Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011;10:911–921.10.1038/nmat3151
  • Shi L, Xu YM, Hark SK, et al. Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 2007;7:3559–3563.10.1021/nl0707959
  • Pacholski C, Kornowski A, Weller H. Site-specific photodeposition of silver on ZnO nanorods. Angew Chem Int Ed. 2004;43:4774–4777.10.1002/(ISSN)1521-3773
  • Fang TH, Kang SH. Electromechanical characteristics of ZnO:Al nanorods. J Nanosci Nanotechnol. 2010;10:405–412.10.1166/jnn.2010.1795
  • Khanchandani S. Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J Phys Chem C. 2013;117:5558–5567.10.1021/jp310495j
  • Zhang P, Li BB, Zhao ZB. Furfural-induced hydrothermal synthesis of ZnO@C gemel hexagonal microrods with enhanced photocatalytic activity and stability. ACS Appl Mater Interfaces. 2014;6:8560–8566.10.1021/am501423j
  • Fan LY, Yu SH. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties. Phys Chem Chem Phys. 2009;11:3710–3717.10.1039/b823379a
  • Li P, Wei Z, Wu T, et al. Au−ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc. 2011;133:5660–5663.10.1021/ja111102u
  • Fan FR, Ding Y, Liu DY, et al. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J Am Chem Soc. 2009;131:12036–12037.10.1021/ja9036324
  • Martínez-Suárez L, Siemer N. Promoting the synthesis of methanol: understanding the requirements for an industrial catalyst for the conversion of CO2. ACS Catal. 2015;5:4201–4218.10.1021/acscatal.5b00442
  • Hou WB, Cronin SB. A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater. 2013;23:1612–1619.10.1002/adfm.v23.13
  • Duan HL, Xuan YM. Enhancement of light absorption of cadmium sulfide nanoparticle at specific wave band by plasmon resonance shifts. Phys E: Low Dimens Syst Nanostruct. 2011;43:1475–1480.10.1016/j.physe.2011.04.010
  • Zheng YH, Zheng LR, Zhan YY. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem. 2007;46:6980–6986.10.1021/ic700688f
  • Deng Q, Duan XW, Ng DHL. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Interfaces. 2012;4:6030–6037.10.1021/am301682g
  • Liu YS, Wei SH, Gao W. Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium. J Hazard Mater. 2015;287:59–68.10.1016/j.jhazmat.2014.12.045
  • Dou PT, Tan FT, Wang W. One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. J Photochem Photobiol A: Chem. 2015;302:17–22.10.1016/j.jphotochem.2014.12.012
  • Wang LB, Hu QK, Li ZY. Microwave-assisted synthesis and photocatalytic performance of Ag-doped hierarchical ZnO architectures. Mater Lett. 2012;79:277–280.10.1016/j.matlet.2012.04.062
  • Bazant P, Kuritka I, Munster L. Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: a joint XPS, XRD and SEM study. Cellulose. 2015;22:1275–1293.
  • Karunakaran C, Rajeswari V, Gomathisankar P. Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 2011;13:923–928.10.1016/j.solidstatesciences.2011.02.016
  • Hou X. ZnO/Ag heterostructured nanoassemblies: Wet-chemical preparation and improved visible-light photocatalytic performance. Mater Lett. 2015;139:201–204.10.1016/j.matlet.2014.10.053
  • Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2010;2:1358–1374.10.1039/b9nr00377 k
  • Akhundi A, Habibi-Yangjeh A. Ternary g-C3N4/ZnO/AgCl nanocomposites: synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant. Appl Surf Sci. 2015;358:261–269.10.1016/j.apsusc.2015.08.149
  • Jung SH, Oh E, Lee KH, et al. A sonochemical method for fabricating aligned ZnO nanorods. Adv Mater. 2007;19:749–753.10.1002/(ISSN)1521-4095
  • Roza L, Rahman MYA, Umar AA, et al. Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. J Alloys Compd. 2015;618:153–158.10.1016/j.jallcom.2014.08.113
  • Vayssieres L, Keis K, Hagfeldt A, et al. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater. 2001;13:4395–4398.10.1021/cm011160s
  • Borade P, Joshi KU, Gokarna A, et al. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique. Mater Chem Phys. 2016;169:152–157.10.1016/j.matchemphys.2015.11.042
  • Zheng Y, Chen C, Zhan C, et al. Luminescence and photocatalytic activity of ZnO nanocrystals:  correlation between structure and property. Inorg Chem. 2007;46:6675–6682.10.1021/ic062394 m
  • Kaviya S, Prasad E. Sunlight induced synthesis of reversible and reusable biocapped nanoparticles for metal ion detection and SERS studies. ACS Sustainable Chem Eng. 2014;2:699–705.10.1021/sc400404 m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.