866
Views
43
CrossRef citations to date
0
Altmetric
Review

Applications of polymer/graphene nanocomposite membranes: a review

Pages 276-287 | Received 10 Feb 2018, Accepted 20 Mar 2018, Published online: 26 Mar 2018

References

  • Cui Z, Drioli E, Lee YM. Recent progress in fluoropolymers for membranes. Prog Polym Sci. 2014;39:164–198.10.1016/j.progpolymsci.2013.07.008
  • Huang H, Wu H, Chen Q, et al. A novel hydrophilic treatment of polyvinylidene fluoride membrane based on layer-by-layer assembly. Mater Res. 2015;19:S2–18.
  • Dong XW, Zhuang JB, Huang NB, et al. Development of anion-exchange membrane for anion-exchange membrane fuel cells. Mater Res Innovat. 2015;19:S6–38.
  • Gonzalez JS, Luduena LN, Ponce A, et al. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C-Mater Biol Appl. 2014;34:54–61.10.1016/j.msec.2013.10.006
  • Zhang AiqinL, Tang YakunN, Cheng YuanhuaP, et al. Membrane extraction performances and simulation of bromine recovery with poly (vinylidene fluoride) hollow fibre membranes. Mater Sci Eng C-Mater Biol Appl. 2015;19:S5–112.10.1016/j.mseb.2015.03.002
  • Mahato N, Parveen N, Cho MH. Graphene nanodiscs from electrochemical assisted micromechanical exfoliation of graphite: morphology and supramolecular behavior. Mater Express. 2015;5:471–479.10.1166/mex.2015.1270
  • Miculescu M, Muhulet A, Nedelcu A, et al. Graphene-based polymer nanocomposite membranes: a review. Optoelectron Adv Mater-Rapid Commun. 2014;8:1072–1076.
  • Ambrosi A, Chua CK, Bonanni A, et al. Electrochemistry of graphene and related materials. Chem Rev. 2014;114:7150–7188.10.1021/cr500023c
  • Miculescu M, Thakur VK, Miculescu F, et al. Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol. 2016;27:844–859.10.1002/pat.v27.7
  • Eftekhari A, Shulga YM, Baskakov SA, et al. Graphene oxide membranes for electrochemical energy storage and conversion. Int J Hydrog Ener. 2018;43:2307–2326.10.1016/j.ijhydene.2017.12.012
  • Mukhopadhyay P, Gupta RK, editors. Graphite, graphene, and their polymer nanocomposites. New York (NY): CRC Press; 2012.
  • Itkis ME, Borondics F, Yu A, et al. Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Lett. 2007;7:900–904.10.1021/nl062689x
  • Cai D, Song M. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem. 2010;20:7906–7915.10.1039/c0jm00530d
  • Chaudhry AU, Mittal V. High-density polyethylene nanocomposites using masterbatches of chlorinated polyethylene/graphene oxide. Polym Eng Sci. 2013;53:78–88.10.1002/pen.v53.1
  • Moon IK, Lee J, Ruoff RS, et al. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010;1:73.
  • Wang J, Shi Z, Ge Y, et al. Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Mater Chem Phys. 2012;136:43–20.10.1016/j.matchemphys.2012.06.017
  • Zeng X, Yang J, Yuan W. Preparation of a poly (methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J. 2012;48:1674–1682.10.1016/j.eurpolymj.2012.07.011
  • Rahman MA, Chung G-S. Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd. 2013;581:724–730.10.1016/j.jallcom.2013.07.118
  • Bian J, Lin HL, He FX, et al. Processing and assessment of high-performance poly (butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur Polym J. 2013;49:1406–1423.10.1016/j.eurpolymj.2013.02.027
  • Zhang H-B, Zheng W-G, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. 2010;51:1191–1196.10.1016/j.polymer.2010.01.027
  • Liu Y, Wang H, Zhou J, et al. Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta. 2013;112:44–52.10.1016/j.electacta.2013.08.149
  • Huang YF, Lin CW. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in situ polymerization process. Polymer. 2012;53:2574–2582.10.1016/j.polymer.2012.04.022
  • Huang Y, Zeng M, Ren J, et al. Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A. 2012;401:97–106.10.1016/j.colsurfa.2012.03.031
  • Wu J, Huang G, Li H, et al. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer. 1930;2013:54.
  • Bora C, Bharali P, Baglari S, et al. Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol. 2013;87:1–7.10.1016/j.compscitech.2013.07.025
  • Lipatov YS. Interfaces in polymer-polymer composites. In: Ishida H, editor. Controlled interphases in composite materials. Amsterdam: Elsevier Science Publ Co Inc; 1990. p. 599–611.10.1007/978-94-011-7816-7
  • Terrones M, Martín O, González M, et al. Interphases in Graphene Polymer-based Nanocomposites: achievements and Challenges. Adv Mater. 2011;23:5302–5310.10.1002/adma.v23.44
  • Das TK, Prusty S. Graphene-based polymer composites and their applications. Polym-Plast Technol Eng. 2013;52:319–331.10.1080/03602559.2012.751410
  • Stoller MD, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502.10.1021/nl802558y
  • Xu Y, Hong W, Bai H, et al. Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon. 2009;47:3538–3543.10.1016/j.carbon.2009.08.022
  • Thakur VK, Kessler MR. Self-healing polymer nanocomposite materials: a review. Polymer. 2015;69:369–383.10.1016/j.polymer.2015.04.086
  • Chen C, Hong X, Xu T, et al. Preparation and electrochemical and electrochromic properties of wrinkled poly (N-methylthionine) film. Synth Met. 2015;205:175–184.10.1016/j.synthmet.2015.03.038
  • Ganeshkumar A, Bera D, Mistri EA, et al. Triphenyl amine containing sulfonated aromatic polyimide proton exchange membranes. Eur Polym J. 2014;60:235–246.10.1016/j.eurpolymj.2014.09.009
  • Wu J-J, Lee H-W, You J-H, et al. Adsorption of silver ions on polypyrrole embedded electrospun nanofibrous polyethersulfone membranes. J Colloid Interface Sci. 2014;420:145–151.10.1016/j.jcis.2014.01.011
  • Pappu A, Patil V, Jain S, et al. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol. 2015;79:449–458.10.1016/j.ijbiomac.2015.05.013
  • Thakur VK, Thakur MK. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol. 2015;72:834–847.10.1016/j.ijbiomac.2014.09.044
  • Soto Espinoza SL, Arbeitman CR, Clochard MC, et al. Functionalization of nanochannels by radio-induced grafting polymerization on PET track-etched membranes. Radiat Phys Chem. 2014;94:72–75.10.1016/j.radphyschem.2013.05.043
  • Ruan X, He G, Li B, et al. Cleaner recovery of tetrafluoroethylene by coupling residue-recycled polyimide membrane unit to distillation. Sep Purif Technol. 2014;124:89–98.10.1016/j.seppur.2014.01.014
  • Lin M-F, Thakur VK, Tan EJ, et al. Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem. 2011;21:16500–16504.10.1039/c1jm12429c
  • Mahmoud KA, Mansoor B, Mansour A, et al. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination. 2015;356:208–225.10.1016/j.desal.2014.10.022
  • Sen U, Bozkurt A, Ata A. Nafion/poly (1-vinyl-1, 2, 4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. J Power Sources. 2010;195:7720–7726.10.1016/j.jpowsour.2010.04.087
  • Li M, Scott K. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications. Electrochim Acta. 2010;55:2123–2128.10.1016/j.electacta.2009.11.044
  • Nagarale RK, Shin W, Singh PK. Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym Chem. 2010;1:388–408.10.1039/B9PY00235A
  • Antolini E, Gonzalez ER. Carbon supports for low-temperature fuel cell catalysts. Appl Catal A: Gen. 2009;365:1–19.
  • Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater. 2010;22:2392–2415.10.1002/adma.v22:22
  • Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chem Soc Rev. 2010;39:3157–3180.10.1039/b923596e
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–240.10.1039/B917103G
  • Chandan A, Hattenberger M, El-kharouf A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. J Power Sources. 2013;231:264–278.10.1016/j.jpowsour.2012.11.126
  • Tseng CY, Ye YS, Cheng MY, et al. Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv Ener Mater. 2011;1:1220–1224.10.1002/aenm.201100366
  • Cao YC, Xu C, Wu X, et al. A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources. 2011;196:8377–8382.10.1016/j.jpowsour.2011.06.074
  • Liu Q, Liu Z, Zhang X, et al. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett. 2008;92:223303/1–3.
  • Dua V, Surwade SP, Ammu S, et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angewan Chem Int Ed. 2010;49:2154–2157.10.1002/anie.v49:12
  • Bae SY, Jeon IY, Yang J, et al. Large-area graphene films by simple solution casting of edgeselectively functionalized graphite. ACS Nano. 2011;5:4974–4980.10.1021/nn201072 m
  • Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6:183–191.10.1038/nmat1849
  • Wang S, Goh BM, Manga KK, et al. Graphene as atomic template and structural scaffold in the synthesis of graphene−organic hybrid wire with photovoltaic properties. ACS Nano. 2010;4:6180–6186.10.1021/nn101800n
  • Chen JT, Hsu CS. Conjugated polymer nanostructures for organic solar cell applications. Polym Chem. 2011;2:2707–2722.10.1039/c1py00275a
  • Sun Y, Welch GC, Leong WL, et al. Solution processed small-molecule solar cells with 6.7% efficiency. Nature Mater. 2012;11:44–48.10.1038/nmat3160
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-organized discotic liquid crystals for highefficiency organic photovoltaics. Science. 2001;293:1119–1122.10.1126/science.293.5532.1119
  • Kuilla T, Bhadrab S, Yaoa D, et al. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–1375.10.1016/j.progpolymsci.2010.07.005
  • Iwan A, Chuchmała A. Perspectives of applied graphene: polymer solar cells. Prog Polym Sci. 2012;37:1805–1828.10.1016/j.progpolymsci.2012.08.001
  • Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008;47:2930–2946.10.1002/(ISSN)1521-3773
  • Whittingham MS. Lithium batteries and cathode materials. Chem. Rev. 2004;104:4271–4301.10.1021/cr020731c
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.10.1038/nature04233
  • Heersche HB, Jarillo-Herrero P, Oostinga JB, et al. Bipolar supercurrent in graphene. Nature. 2007;446:56–59.10.1038/nature05555
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286.10.1038/nature04969
  • Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009;47:2049–2053.10.1016/j.carbon.2009.03.053
  • Liao H, Zhang H, Qin G, et al. A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium-ion batteries. RSC Adv. 2017;7:22112–22120.10.1039/C7RA02950 K
  • Yu BC, Wang YC, Lu HC, et al. Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane. Energy. 2017;134:802–812.
  • Li L-Y, Yu B-C, Shih C-M, et al. Polybenzimidazole membranes for direct methanol fuel cell: acid-doped or alkali-doped? J Power Sources. 2015;287:386–395.10.1016/j.jpowsour.2015.04.018
  • Le PML, Vo TD, Do NH, et al. Composite graphene/blended polymer of PEO/PVDF-HFP as solid polymer electrolyte for sodium batteries. Electrochem Soc. 2018;3:438–438.
  • Yazici MS, Azder MA, Salihoglu O. CVD grown graphene as catalyst for acid electrolytes. Int J Hydrog Ener. 2018;. doi:10.1016/j.ijhydene.2018.01.180.
  • Nicholls IA, Andersson HS, Charlton C, et al. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron. 2009;25:543–552.10.1016/j.bios.2009.03.038
  • Wang JY, Liu F, Xu ZL, et al. Theophylline molecular imprint composite membranes prepared from poly (vinylidene fluoride)(PVDF) substrate. Chem Eng Sci. 2010;65:3322–3330.10.1016/j.ces.2010.02.024
  • Wang ZH, Li H, Chen J, et al. Acetylsalicylic acid electrochemical sensor based on PATP–AuNPs modified molecularly imprinted polymer film. Talanta. 2011;85:1672–1679.10.1016/j.talanta.2011.06.067
  • Dai CL, Liu CS, Wei J, et al. Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials. 2010;31:7620–7630.10.1016/j.biomaterials.2010.06.049
  • Xi FN, Liu LJ, Wu Q, et al. One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosens Bioelectron. 2008;24:29–34.10.1016/j.bios.2008.03.023
  • Zou YJ, Xiang CL, Sun LX, et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron. 2008;23:1010–1016.10.1016/j.bios.2007.10.009
  • Fan Q, Shan D, Xue HG, et al. Amperometric phenol biosensor based on laponite clay–chitosan nanocomposite matrix. Biosens Bioelectron. 2007;22:816–821.10.1016/j.bios.2006.03.002
  • Sun CL, Lee HH, Yang JM, et al. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron. 2011;26:3450–3455.10.1016/j.bios.2011.01.023
  • Lian W, Liu S, Yu J, et al. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron. 2012;38:163–169.10.1016/j.bios.2012.05.017
  • Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41:797–828.10.1039/C1CS15060 J
  • Wu Q, Xu YX, Yao ZY, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 2010;4:1963–1970.10.1021/nn1000035
  • Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–6214.10.1021/cr3000412
  • Hu LB, Pasta M, La MantiaL F, et al. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010;10:708–714.10.1021/nl903949 m
  • Zheng Q, Cai Z, Ma Z, et al. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfac. 2015;7:3263–3271.10.1021/am507999s
  • Lewandowski A, Jakobczyk P, Galinski M, et al. Self-discharge of electrochemical double layer capacitors. Phys Chem Chem Phys. 2013;15:8692–8699.10.1039/c3cp44612c
  • Zhou RF, Meng CZ, Zhu F, et al. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology. 2010;21:345701.10.1088/0957-4484/21/34/345701
  • Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys. 2007;9:1774–1785.10.1039/b618139 m
  • Meng CZ, Liu CH, Fan SS. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem Commun. 2009;11:186–189.10.1016/j.elecom.2008.11.005
  • Meng C, Liu C, Chen L, et al. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010;10:4025–4031.10.1021/nl1019672
  • Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–3204.10.1016/j.polymer.2008.04.017
  • Cui Y, Kundalwal SI, Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–333.10.1016/j.carbon.2015.11.018
  • Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–6530.10.1021/ma100572e
  • Pal R. Permeation models for mixed matrix membranes. J Colloid Interface Sci. 2008;317:191–198.10.1016/j.jcis.2007.09.032
  • Nielsen EL. Models for the permeability of filled polymer systems. J Macromol Sci Part Pure Appl Chem. 1967;1:929–942.
  • Jiang DE, Cooper VR, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 2009;9:4019–4024.10.1021/nl9021946
  • Du H, Li J, Zhang J, et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C. 2011;115:23261–23266.10.1021/jp206258u
  • Kim HW, Yoon HW, Yoon SM, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science. 2013;342:91–95.10.1126/science.1236098
  • Roilo D, Patil PN, Brusa RS, et al. Polymer rigidification in graphene based nanocomposites: gas barrier effects and free volume reduction. Polymer. 2017;121:17–25.
  • Yoo BM, Shin JE, Lee HD, et al. Graphene and graphene oxide membranes for gas separation applications. Curr Opin Chem Eng. 2017;16:39–47.10.1016/j.coche.2017.04.004
  • Moghadam F, Park HB. Two-dimensional materials: an emerging platform for gas separation membranes. Curr Opin Chem Eng. 2018;20:28–38.10.1016/j.coche.2018.02.004
  • Lalia BS, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: structure, properties and performance relationship. Desalination. 2013;326:77–95.10.1016/j.desal.2013.06.016
  • Yamamura H, Okimoto K, Kimura K, et al. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Res. 2014;54:123–136.10.1016/j.watres.2014.01.024
  • Gao W, Liang H, Ma J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination. 2011;3:1–8.10.1016/j.desal.2011.01.051
  • Yin J, Deng B. Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci. 2015;479:256–275.10.1016/j.memsci.2014.11.019
  • De Lannoy CF, Soyer E, Wiesner MR. Optimizing carbon nanotube reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Membr Sci. 2013;447:395–402.10.1016/j.memsci.2013.07.023
  • Ehsani A, Kowsari E, Boorboor Ajdari F, et al. Sulfonated graphene oxide and its nanocomposites with electroactive conjugated polymer as effective pseudocapacitor electrode materials. J. Colloid Interface Sci. 2017;497:258–265.10.1016/j.jcis.2017.03.001
  • Ehsani A, Mohammad Shiri H, Kowsari E, et al. Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors. J Colloid Interface Sci. 2016;478:181–187.10.1016/j.jcis.2016.06.013
  • Bao Q, Zhang H, Yang JX, et al. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater. 2010;20:782–791.10.1002/adfm.v20:5
  • Wang H, Lu X, Lu X, et al. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly (ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers. Appl Surf Sci. 2017;425:603–613.10.1016/j.apsusc.2017.06.292
  • Dervishi E, Auchter E, Marquez J, et al. Development of formvar-based membranes with controlled porosities for microfluidics and large-area graphene transfer. Electrochem Soc. 2018;10:859–859.
  • Cay-Durgun P, Lind ML. Nanoporous materials in polymeric membranes for desalination. Curr Opin Chem Eng. 2018;20:19–27.10.1016/j.coche.2018.01.001
  • Wei Y, Wang J, Jia X, et al. Polyaniline as corrosion protection coatings on cold rolled steel. Polymer. 1995;36:4535–4537.10.1016/0032-3861(95)96866-7
  • Yeh JM, Liou SJ, Lai CY, et al. Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline−clay nanocomposite materials. Chem Mater. 2001;13:1131–1136.10.1021/cm000938r
  • Nazarenko S, Meneghetti P, Julmon P, et al. Gas barrier of polystyrene montmorillonite clay composites: effect of mineral layer aggregation. J Polym Sci Part B: Polym Phys. 2007;45:1733–1753.10.1002/(ISSN)1099-0488
  • Huang HY, Huang TC, Yeh TC, et al. M.H. Advanced anticorrosive materials prepared from aminecapped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties. Polymer. 2011;52:2391–2400.10.1016/j.polymer.2011.03.030
  • Zhang WL, Liu YD, Choi HJ. Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J Mater Chem. 2011;21:6916–6921.10.1039/c1jm10323 g
  • Prasai D, Tuberquia JC, Harl RR, et al. Graphene: corrosion-inhibiting coating. ACS Nano. 2012;6:1102–1108.10.1021/nn203507y
  • Zhang WL, Liu YD, Choi HJ. Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. Carbon. 2012;50:290–296.10.1016/j.carbon.2011.08.049
  • Compton OC, Kim S, Pierre C, et al. Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater. 2010;22:4759–4763.10.1002/adma.v22:42
  • Chang CH, Huang TC, Peng CW, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon. 2012;50:5044–5051.10.1016/j.carbon.2012.06.043
  • Singh BP, Nayak S, Nanda KK, et al. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon. 2013;61:47–56.10.1016/j.carbon.2013.04.063
  • Shen H, Zhang L, Liu M, et al. Biomedical applications of graphene. Theranostics. 2012;2:283.
  • Bitounis D, Ali-Boucetta H, Hong BH, et al. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–2268.10.1002/adma.201203700
  • Kidambi PR, Jang D, Idrobo JC, et al. Nanoporous atomically thin graphene membranes for desalting and dialysis applications. Adv Mater. 2017;29:1700277. doi: 10.1002/adma.201700277.
  • Pei Y, Travas-Sejdic J, Williams DE. Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films. Langmuir. 2012;28:8072.10.1021/la301031b
  • Krishnamoorthy M, Hakobyan S, Ramstedt M, et al. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev. 2014;114:10976–11026.10.1021/cr500252u
  • Roy N, Bhowmick AK. Tailor-made fibrous nanohydroxyapatite/polydimethylsiloxane composites: excavating the role of nanofiller aspect ratio, amorphicity, and noncovalent surface interaction. J Phys Chem C. 2012;116:8763–8772.10.1021/jp210835a
  • Goh PS, Ng BC, Lau WJ, et al. Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Separat. Purificat. Rev. 2015;44:216–249.10.1080/15422119.2014.926274
  • Keledi G, Hári J, Pukánszky B. Polymer nanocomposites: structure, interaction, and functionality. Nanoscale. 2012;4:1919–1938.10.1039/c2nr11442a
  • Vadahanambi S, Lee SH, Kim WJ, et al. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environmen Sci Technol. 2013;47:10510–10517.
  • Tang Q, Zhou Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013;58:1244–1315.10.1016/j.pmatsci.2013.04.003
  • Chen W, Chen S, Hu W, et al. The preparation approaches of polymer/graphene nanocomposites and their appilcation research progress as electrochemical sensors. J New Mater Electrochem Sys. 2017;20:205–221.
  • Rajender N, Suresh KI, Sreedhar B. Comb-like polymer-graphene nanocomposites with improved adhesion properties via surface-initiated atom transfer radical polymerization (SI-ATRP). J Appl Polym Sci. 2018;135:45885.
  • Yanik MO, Yigit EA, Akansu YE, et al. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy. 2017;138:883–889.10.1016/j.energy.2017.07.022
  • Yazdi AZ, Navas IO, Abouelmagd A, et al. Direct creation of highly conductive laser-induced graphene nanocomposites from polymer blends. Macromolecul Rapid Communicat. 2017;38:1700176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.