91
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterisation of pure and neodymium doped samarium strontium cobaltites

, , &
Pages 299-304 | Received 23 Dec 2017, Accepted 26 Apr 2018, Published online: 09 May 2018

References

  • Mahmud LS, Muchtar A, Somalu MR. Challenges in fabricating planar solid oxide fuel cells: a review. Renew Sustain Energy Rev. 2017;72:105–116.10.1016/j.rser.2017.01.019
  • Zhou YC, Yuan C, Liu YD. Metalsupported solid oxide fuel cells with infiltrated nanoelectrodes. Mater Res Innovations. 2014;18:122–127.
  • Wang B, Long G, Ji Y. Layered perovskite GdBa0 5Sr0 5CoCuO5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Mater Res Innovations. 2014;18:128–131.
  • Jiang SP, Shen PK. Nanostructured and advanced materials for fuel cells. Adv Mater Sci Eng Ser. 2014:1–2.
  • Xia C, Rauch W, Chen F, et al. Sm0.5 Sr0.5 CoO3 cathodes for low-temperature SOFCs. Solid State Ionics. 2002;149(1–2):11–19.10.1016/S0167-2738(02)00131-5
  • Steele BCH. Appraisal of Ce1− yGdyO2− y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics. 2000;129:95–110.10.1016/S0167-2738(99)00319-7
  • Doshi R, Richards VL, Carter JD, et al. Development of solid-oxide fuel cells that operate at 500 °C. J Electrochem Soc. 1999;146:1273–1278.10.1149/1.1391758
  • Maguire E, Gharbage B, Marques FMB, et al. Cathode materials for intermediate temperature SOFCs. Solid State Ionics. 2000;127:329–335.10.1016/S0167-2738(99)00286-6
  • Tedmon CS, Spacil HS, Mitoff SP. Cathode materials and performance in high-temperature zirconia electrolyte fuel cells. J Electrochem Soc. 1969;116:1170–1175.10.1149/1.2412271
  • Kaga Y, Ohno Y, Tsukamoto K, et al. Relationships between the gas permeabilities and the microstructures of plasma sprayed oxide layers. Solid State Ionics. 1990;40–41:1000–1002.10.1016/0167-2738(90)90173-O
  • Mizusaki J, Cannon WR, Bowen HK. Electrochemical degradation of ceramic electrodes. J Am Ceram Soc. 1980;63:391–397.10.1111/jace.1980.63.issue-7-8
  • Ohno Y, Nagata S, Sato H. Properties of oxides for high temperature solid electrolyte fuel cell. Solid State Ionics. 1983;9–10:1001–1007.10.1016/0167-2738(83)90122-4
  • Lv H, Zhao BY, Wu YJ, et al. Effect of B-site doping on Sm0.5Sr0.5MxCo1−xO3−δ properties for IT-SOFCcathode material (M = Fe, Mn). Mat Res Bulletin. 2007;42(12):1999–2012.
  • Wang S, Kato T, Nagata S, et al. Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs. Solid State Ionics. 2002;146:203–210.10.1016/S0167-2738(01)01015-3
  • Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Sol State Elect chem. 2010;14(7):1125–1144.10.1007/s10008-009-0932-0
  • Li CH, Hu SH, Tay KW, et al. Electrochemical characterization of gradient Sm0.5Sr0.5CoO3-δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells. Ceram Inter. 2012;38(2):1557–1562.10.1016/j.ceramint.2011.09.041
  • Sanusi A, Basirun WJ, Kufian MZ, et al. Redox behaviour of crystalline LiFePO4 prepared by chemical precipitation and low temperature sterilisation. Mat Res Inno. 2009;13(3):275–277.10.1179/143307509X440514
  • Yang HB, Lin Y, Wang F, et al. Molten salt synthesis of single phase CoFe2O4 powders. Mat Techno. 2008;23(3):138–141.
  • Mahmud LS, Muchtar A, Somalu MR. Challenges in fabricating planar solid oxide fuel cells: a review. Renew Sustain Energy Rev. 2017;72:105–116.10.1016/j.rser.2017.01.019
  • Derakhshi Z, Tamizifar M, Arzani K, et al. Synthesis and Characterization of LaCoxFe1-xO3 (0≤x≤1) Nano-Crystal Powders by Pechini Type Sol-Gel Method. Synth React Inorg Met-Org Nano-Met Chem. 2016;46(1):25–30.10.1080/15533174.2014.900628
  • Malherbe RR. The physical chemistry of materials: energy and environmental applications. CRC Press. 2016;522.
  • Lee D, Jung I, Lee SO, et al. Durable high-performance Sm0.5Sr0.5CoO3-Sm0.2Ce0.8O1.9 core-shell type composite cathodes for low temperature solid oxide fuel cells. Int J Hydrogen Energy. 2011;36:6875–6881.10.1016/j.ijhydene.2011.02.093
  • Motuzas J, Liang J, Chen FL, et al. Deactivation and regeneration of oxygen reduction reactivity on double perovskite Ba2Bi0.1Sc0.2Co1.7O6− x cathode for intermediate temperature solid oxide fuel cells. Chem Mater. 2011;23(6):1618−1624.
  • Wei B, Lü Z, Li S, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3−δ for solid oxide fuel cells. Electrochem Solid State Lett. 2005;8(8):428–431.10.1149/1.1951232
  • Tai LW, Nasrallash MM, Anderson HU, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Solid State Ionics. 1995;76:259–271.10.1016/0167-2738(94)00244-M
  • Bansal NP, Wise B. Sol–gel synthesis of La0.6Sr0.4CoO3−x and Sm0.5Sr0.5CoO3−x cathode nanopowders for solid oxide fuel cells. Ceram Int. 2012;38(7):5535–5541.
  • Bansal NP, Zhong Z. Combustion synthesis of Sm0.5Sr0.5CoO3−x and La0.6Sr0.4CoO3−xnanopowders for solid oxide fuel cell cathodes. J Power Sources. 2006;158:148–153.
  • Yang S, He T, He Q. Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process Formation, characterization, and application in LaGaO. J Alloys Compds. 2008;450(1–2):400–404.10.1016/j.jallcom.2006.10.147
  • Xia C, Rauch W, Chen F, et al. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics. 2002;149(1–2):11–19.10.1016/S0167-2738(02)00131-5
  • Warren BE. X-ray diffraction. Dover. 1990:251.
  • Cullity BD. Elements of X-ray Diffraction. 2nd ed. Reading (MA): Addison-Wesley; 1978. p. 284.
  • Li CX, Liu S, Zhang Y, et al. Characterization of the microstructure and electrochemical behavior of Sm0.7Sr0.3Co3 cathode deposited by solution. Int J Hydrogen Energy. 2012;37:13097–13102.10.1016/j.ijhydene.2012.04.122
  • Singh B, Ghosh S, Aich S, et al. Low temperature solid oxide electrolytes (LT-SOE): a review. J Power Sources. 2017;339:103–135.
  • Scurtu R, Somacescu S, Calderon-Moreno JM, et al. Nanocrystalline Sm0.5Sr0.5CoO3- synthesized using a chelating route for use in IT-SOFC cathodes microstructure, surface chemistry and electrical conductivity. J Solid State Chem. 2013;210:53–59.
  • Patakangas J, Ma Y, Jing Y, et al. Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). J Power Sources. 2014;263:315–331.10.1016/j.jpowsour.2014.04.008
  • Chen L, Lu C, Fang ZhenggangV, et al. Variable infrared emittance of Sr-incorporated Sm1−xSrxCoO3 (0.1 ≤ x ≤ 0.9). J Phys D Appl Phys. 2013;46(10):105302.10.1088/0022-3727/46/10/105302
  • Agilandeswari K, Kumar AR. Synthesis, characterization, microstructure, optical and magnetic properties of strontium cobalt carbonate precursor and Sr2Co2O5 oxide material. Superlattices Microstruct. 2014;68:27–37.10.1016/j.spmi.2014.01.002
  • Taguchi H, Shimada M, Koizumi M. The electrical properties of ferromagnetic SrCoO3. Mat Res Bull. 1987;15:165–169.
  • Williams EH. Note on the magnetic properties of rare earth oxides. Phy Review. 1926;27:484.10.1103/PhysRev.27.484
  • Baoming A, Wei Z, Youmin G, et al. A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3−δ perovskite and Sm0.2Ce0.8O1.9 for an intermediate temperature solid-oxide fuel cell. Int J Hydrogen Energy. 2010;35:5601–5610.
  • Chang CL, Hsu CS and Hwang BH. Unique porous thick Sm0.5Sr0.5CoO3 solid oxide fuel cell cathode films prepared by spray pyrolysis. J Power Sources. 2008;179(1):734–738.10.1016/j.jpowsour.2008.01.019
  • Conceição LD, Silva AM, Ribeiro NFP, et al. Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Mater Res Bull. 2011;46:308–314.10.1016/j.materresbull.2010.10.009
  • Gao M, Li CJ, Li CX, et al. Microstructure, oxygen stoichiometry and electrical conductivity of flame-sprayed Sm0.7Sr0.3CoO3− δ. J Power Sources. 2009;191(2):275–279.10.1016/j.jpowsour.2009.02.016
  • Dutta A, Mukhopadhyay J, Basu RN. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells. J Euro Ceramic Soc. 2009;29:2003–2011.10.1016/j.jeurceramsoc.2008.11.011
  • Saitoh T, Mizokawa T, Fujimori A, et al. Electronic structure and temperature-induced paramagnetism in LaCoO3. Phys Rev B. 1997;55(7–11):4257.10.1103/PhysRevB.55.4257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.