278
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanodiamond integrating poly(methyl methacrylate) nanocomposites intending for technological innovations

ORCID Icon
Pages 310-319 | Received 30 Mar 2020, Accepted 17 Aug 2020, Published online: 26 Aug 2020

References

  • Zhao XY, Sun ZY, Ji JQ, et al. Design, synthesis and characterisation of novel photoresponsive poly (methyl methacrylate). Mater Res Innovat. 2014;18:451–456.
  • Yap KS, Teo LP, Sim LN, et al. Plasticised polymer electrolytes based on PMMA grafted natural rubber–LiCF3SO3–PEG200. Mater Res Innovat. 2011;15:s34–s38.
  • Kausar A. Poly (methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a review. Polym Plast Technol Mater. 2019;58(8):21–842.
  • Kausar A. Nanodiamond: a multitalented material for cutting edge solar cell application. Mater Res Innovat. 2018;18:302–314.
  • Kausar A. Structure and chemistry of polymer/nanodiamond composites. In: Hybrid polymer composite materials. Woodhead publishing. 2017. p. 1–21.
  • Gad MM, Fouda SM, Al-Harbi FA, et al. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomed. 2017;12:3801.
  • Mochalin VN, Gogotsi Y. Nanodiamond–polymer composites. Diam Relat Mater. 2015;58:161–171.
  • Nunn N, Torelli M, McGuire G, et al. Nanodiamond: a high impact nanomaterial. Curr Opin Sol Stat Mater Sci. 2017;21:1–9.
  • Neitzel I, Mochalin VN, Gogotsi Y Nanodiamonds in composites: polymer chemistry and tribology. In: Nanodiamonds. Elsevier; 2017. p. 365–390.
  • Lim DG, Prim RE, Kim KH, et al. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharmaceut. 2016;514:41–51.
  • Shirshin KV, Kornienko PV, Shalaginova IA. Acrylic compositions for adhesion of poly (methyl metacrylate), poly(met)acrylamides, and polycarbonate. Polym Sci Ser D. 2020;13:1–5.
  • Ali U, Karim KJ, Buang NA. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym Rev. 2015;55:678–705.
  • Sarno M, Mustafa WAA, Senatore A, et al. One-step “green” synthesis of dispersable carbon quantum dots/poly (methyl methacrylate) nanocomposites for tribological applications. Tribol Int. 2020;106311.
  • Cole KA, Funk GA, Rahaman MN, et al. Mechanical and degradation properties of poly (methyl methacrylate) cement/borate bioactive glass composites. J Biomed Mater Res B. 2020.
  • Aldabib JM, Ishak ZAM. Effect of hydroxyapatite filler concentration on mechanical properties of poly (methyl methacrylate) denture base. SN Appl Sci. 2020;2:1–14.
  • Hu L, Yang Z, Zhang X, et al. Fabrication and evaluation of dual function PMMA/nano-carbon composite particles for UV curable anti-glare coating. Prog Org Coat. 2016;101:81–89.
  • Li Y, Guo H. Crosslinked poly (methyl methacrylate) with perfluorocyclobutyl aryl ether moiety as crosslinking unit: thermally stable polymer with high glass transition temperature. RSC Adv. 2020;10:1981–1988.
  • Ash BJ, Siegel RW, Schadler LS. Glass‐transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci B Polym Phys. 2004;42:4371–4383.
  • Abdel-Kader MH, Mohamed MB. Exploring the direct effect of intermediate band semiconductor materials on the structural, thermal and optical properties of PMMA nanocomposite. Appl Phys A. 2020;126:1.
  • Arora M, Chan EK, Gupta S, et al. Polymethylmethacrylate bone cements and additives: A review of the literature. World J.Orthoped. 2013;4:67.
  • Sethy D, Makireddi S, Varghese FV. Piezoresistivebehaviour of graphene nanoplatelet (GNP)/PMMA spray coated sensors on a polymer matrix composite beam. Exp Polym Lett. 2019;13.
  • Parthasarathy V, Nakandhrakumar RS, Mahalakshmi S, et al. Structural, optical, thermal and non-isothermal decomposition behavior of PMMA nanocomposites. J Inorg Organomet Polym Mater 2020;1–6.
  • Nayak D, Choudhary RB, Kandulna R, et al. Investigation of structural, optical and electrical performance of ZnS sensitized PMMA nanocomposite as an emissive layer for OLED application. In AIP Conference Proceedings, AIP Publishing LLC, 2019, 2100. 020017
  • Bergamonti F, Bondioli I, Alfieri S, et al. Weathering resistance of PMMA/SiO2/ZrO2 hybrid coatings for sandstone conservation. Polym Degrad Stab. 2018;147:274–283.
  • Zidan S, Silikas N, Alhotan A, et al. Investigating the mechanical properties of ZrO2-impregnated PMMA nanocomposite for denture-based applications. Materials. 2019;12:1344.
  • Kulakova II. Surface chemistry of nanodiamonds. Phys Solid State. 2004;46:636–643.
  • Zou Q, Li YG, Zou LH, et al. Characterization of structures and surface states of the nanodiamond synthesized by detonation. Mater Charact. 2009;60:1257–1262.
  • Jamalipour M, Zanini L, Gorini G. Directional reflection of cold neutrons using nanodiamond particles for compact neutron sources. In EPJ Web of Conferences, EDP Sciences,2020.231, 04003
  • Hübner J, Pichot V, Lobry E, et al. Formation mechanism of anisotropic RDX/TNT core/shell nanoparticles and their influence onto nanodiamond detonation syntheses. 2020.
  • Houshyar S, Kumar GS, Rifai A, et al. Nanodiamond application for tissue engineering. In Australian Biomedical Engineering Conference 2019 (ABEC 2019): Technology & Research in Australian Medical Science, Engineers Australia, 2019. p. 91.
  • Liu Y, Gu Z, Margrave JL, et al. Functionalization of Nanoscale Diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater. 2004;16:3924–3930.
  • Krueger A, Boedeker T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam Relat Mater. 2008;17:1367–1370.
  • Rani R, Kumar N, Kozakov AT, et al. Superlubrication properties of ultra-nanocrystalline diamond film sliding against a zirconia ball. RSC Adv. 2015;5:100663–100673.
  • Sharma N, Kumar N, Dhara S, et al. Tribological properties of ultra nanocrystalline diamond film-effect of sliding counterbodies. Tribol.Int. 2012;53:167–178.
  • Dementjev AP, Maslakov KI. Chemical state of carbon atoms on a nanodiamond surface: growth mechanism of detonation nanodiamond. Fulleren. Nanotub. Carbon Nanostruct. 2012;20:594–599.
  • Pichot V, Risse B, Schnell F, et al. Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci Rep. 2013;3:1–6.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7:11–23.
  • Li W, Yu X, Naito K, et al. Surface functionalization and disaggregation of nanodiamonds via in situ copolymerization. J Nanosci Nanotechnol. 2017;17:8883–8889.
  • Kumar S, Nehra M, Kedia D, et al. Nanodiamonds: emerging face of future nanotechnology. Carbon. 2019;143:678–699.
  • Qin D, Huang G, Terada D, et al. Nanodiamond mediated interfacial polymerization for high performance nanofiltration membrane. J.Membr. Sci. 2020;118003.
  • Mochalin VN, Neitzel I, Etzold BJ, et al. Gogotsi, covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano. 2011;5:7494–7502.
  • Jancar J, Douglas JF, Starr FW, et al. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer. 2010;51:3321–3343.
  • Schuman TP, Siddabattuni S, Cox O, et al. Improved dielectric breakdown strength of covalently-bonded interface polymer–particle nanocomposites. Compos. Interfac. 2010;17:719–731.
  • Mishra R, Chhalodia AK, Tiwari SK. Recent progress in nanodiamonds: synthesis, properties and their potential applications. VeruscriptFunct.Nanomater, 2018 2, 8W2EG0.
  • Sun Y, Yang Q, Wang H. Synthesis and characterization of nanodiamond reinforced chitosan for bone tissue engineering. J Funct Biomater 2016;7:27.
  • Zhang Y, Choi JR, Park SJ. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos A: Appl Sci Manufact. 2017;101:227–236.
  • Yao P, Huang Z, Zhu Q, et al. A novel composite stationary phase composed of polystyrene/divinybenzene beads and quaternized nanodiamond for anion exchange chromatography. Chinese Chem Lett. 2019;30:465–469.
  • Li Y, Huang S, Zhou S, et al. Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylatednanodiamonds. J Membr Sci. 2018;556:154–163.
  • Etemadi H, Yegani R, Seyfollahi M. The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Separat Purificat Technol. 2017;177:350–362.
  • Ahn GY, Yun TH, Park J, et al. Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Coll Surf B: Biointerfac. 2019;180:273–280.
  • Protopapa P, Kontonasaki E, Bikiaris D, et al. Reinforcement of a PMMA resin for fixed interim prostheses with Nanodiamonds. Dent Mater J. 2011;30:222–231.
  • Avazkonandeh-Gharavol MH, Sajjadi SA, Zebarjad SM, et al. Effect of heat treatment of nanodiamonds on the scratch behavior of polyacrylic/nanodiamond nanocomposite clear coats. Prog Organ Coat. 2013;76:1258–1264.
  • Dolmatov VY. Polymer-diamond composites based on detonation nanodiamonds. Part 2. J Superhard Mater. 2007;29:65–75.
  • Sawada H, Kurachi J, Takahashi H, et al. Dispersion of nanodiamond into organic media by the use of fluoroalkyl end‐capped oligomers—applications to surface modification of poly (methyl methacrylate) with the dispersed nanodiamond. Polym Adv Technol. 2005;16:651–654.
  • Sawada H. Synthesis of self-assembled fluoroalkyl end-capped oligomeric aggregates—Applications of these aggregates to fluorinated oligomeric nanocomposites. Prog Polym Sci. 2007;32:509–533.
  • Shenderova O, Tyler T, Cunningham G, et al. Nanodiamond and onion-like carbon polymer nanocomposites. Diam Relat Mater. 2007;16:1213–1217.
  • Yuen SM, Ma CCM, Chiang CL, et al. Silane-modified MWCNT/PMMA composites–Preparation, electrical resistivity, thermal conductivity and thermal stability. Compos A: Appl Sci Manufact. 2007;38:2527–2535.
  • Du F, Fischer JE, Winey KI. A coagulation method to prepare single-walled carbon nanotube/PMMA composites and their modulus, electrical conductivity, and thermal stability. Departmental Papers (MSE). 2003. p. 63.
  • Li YL, Kuan CF, Chen CH, et al. Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys. 2012;134:677–685.
  • Lim JK, Preparation of poly (methyl methacrylate)/diamond nanoparticle composites via ATRP. 2010.
  • Jee AY, Lee M. Mechanical properties of polycarbonate and poly (methyl methacrylate) films reinforced with surface-functionalized nanodiamonds. J Nanosci Nanotechnol. 2011;11:533–536.
  • Pozdnyakov AO, Voznyakovskii AP, Popov EO, et al. Fine structure of the thermal decomposition kinetics of polymethylmethacrylate filled with detonation nanodiamonds. Phys Solid State. 2011;53:2365–2369.
  • Ma L, Cui G, Tao C, et al. Synthesis and properties of polymethyl methacrylate/nanodiamond composite material. In 2015 International Conference on Electromechanical Control Technology and Transportation. Atlantis Press, 2015, Nov.
  • Wang J, Shi Z, Ge Y, et al. Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Mater Chem Phys. 2012;136:43–50.
  • Gong LX, Pei YB, Han QY, et al. Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Compos Sci Technol. 2016;134:144–152.
  • Nien YH, Huang CL. The mechanical study of acrylic bone cement reinforced with carbon nanotube. Mater,Sci, Engineer.: B. 2010;169:134–137.
  • Liu LQ, Wagner HD. A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites. Compos Interfac. 2007;14:285–297.
  • Chu Y, Tong Y, Huang F, et al. Structure and properties of boundary layer between nanodiamond and resin matrix. J Beijing Institut Technol. 2013;33:1–5.
  • Xie H, Yu W, Li Y. Thermal performance enhancement in nanofluids containing diamond nanoparticles. J Phys D: Appl Phys. 2009;42:095413.
  • Mangal U, Kim JY, Seo JY, et al. Novel poly (methyl methacrylate) containing nanodiamond to improve the mechanical properties and fungal resistance. Materials. 2019;12:3438.
  • Ghosh PK, Kumar A, Kumar K. Improving thermal and electrical properties of graphene–PMMA nanocomposite. Polym Sci Ser A. 2015;57:829–835.
  • Mathur RB, Pande S, Singh BP. Properties of PMMA/carbon nanotubes nanocomposites. Polym Nanotube Nanocompos.: Syn Prop Applicat. 2010;11:177.
  • Alshawafi WM, Aldhahri M, Almulaiky YQ, et al. Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond. Artif Cell Nanomed Biotechnol. 2018;46:S973–S981.
  • Bozhinova DP. Synthesis, modification and characterisation of magnetic micro-matrices for covalent immobilisation of biomolecules. Model investigations with penicillin amidase from E. coli [ Doctoral dissertation], 2004.
  • Komrakova S, Javadzade J, Vorobyov V, et al. On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV). In Journal of Physics: Conference Series. IOP Publishing, 2018, 1124, p. 051046
  • Jabeen S, Gul S, Kausar A, et al. An innovative approach to the synthesis of PMMA/PEG/Nanobifiller filled nanocomposites with enhanced mechanical and thermal properties. Polym Plast Technol Mater. 2019;58:427–442.
  • Ormsby R, McNally T, Mitchell C, et al. Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement. Carbon. 2011;49:2893–2904.
  • Mathur RB, Pande S, Singh BP, et al. Electrical and mechanical properties of multi‐walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos. 2008;29:717–727.
  • Al‐Harbi FA, Abdel‐Halim MS, Gad MM, et al. Effect of nanodiamond addition on flexural strength, impact strength, and surface roughness of PMMA denture base. J Prosthodontics. 2019;28:e417–e425.
  • Zhuang H, Song B, Staedler T, et al. Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir. 2011;27:11981–11989.
  • Takafuji M, Hano N, Yamamoto H, et al. One-pot green process for surface layering with nanodiamonds on polymer microspheres. J Supercritic Fluid. 2017;127:217–222.
  • Nozato S, Mallik AK, Satoh E, et al. A facile and green method to prepare conductive carbon-coated polymer microspheres using supercritical carbon dioxide. Chem Lett. 2016;45:92–94.
  • Chaudhuri RG, Paria S. Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–2433.
  • Kiran E. Supercritical fluids and polymers–The year in review. J Supercrit Fluids. 2016;110:126–153.
  • Li R, Zhang Z, Fang T. Experimental research on swelling and glass transition behavior of poly(methyl methacrylate) in supercritical carbon dioxide. J Supercrit Fluids. 2016;110:110–116.
  • Karami P, Khasraghi SS, Hashemi M, et al. Polymer/nanodiamond composites-a comprehensive review from synthesis and fabrication to properties and applications. Adv Coll Interf Sci. 2019.
  • Almeida Neto GRD, Barcelos MV, Rodríguez RJS. Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Mater Res. 2017;20:768–774.
  • Rosenholm JM, Vlasov II, Burikov SA, et al. Nanodiamondbased composite structures for biomedical imaging and drug delivery. J Nanosci Nanotechnol. 2015;15:959–971.
  • Topouzi M, Kontonasaki E, Bikiaris D, et al. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. J Mech Behave Biomed Mater. 2017;69:213–222.
  • Huang X, Brittain WJ. Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules. 2001;34:3255–3260.
  • Bettencourt A, Almeida AJ. Poly (methyl methacrylate) particulate carriers in drug delivery. J. Microencapsulation. 2012;29:353–367.
  • Li X, Fan Y, Watari F. Current investigations into carbon nanotubes for biomedical application. Biomed Mater. 2010;5:022001.
  • Gonçalves G, Portolés MT, Ramírez-Santillán C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J Mater Sci Mater Med. 2013;24:2787–2796.
  • Esmi A, Jahani Y, Yousefi AA, et al. PMMA-CNT-HAp nanocomposites optimized for 3D-printing applications. Mater Res Exp. 2019;6:085405.
  • Zhu X, Zhang S, Zhang L, et al. Interfacial synthesis of magnetic PMMA@Fe3 O4/Cu3(BTC)2 hollow microspheres through one-pot Pickering emulsion and their application as drug delivery. RSC Adv. 2016;6:58511–58515.
  • Gokhale VJ, Shenderova OA, McGuire GE, et al. Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J Microelectromech Sys. 2013;23:191–197.
  • Maitra U, Gomathi A, Rao ACNR. Covalent and noncovalent functionalisation and solubilisation of nanodiamond. J Experimen Nanosc. 2008;3:271–278.
  • Kuzhir P, Maksimenko S, Bychanok D, et al. Nano-scaled onion-like carbon: prospective material for microwave coatings. Metamaterials. 2009;3:148–156.
  • Hsin YL, Chu HY, Jeng YR, et al. In situ de-agglomeration and surface functionalization of detonation nanodiamond, with the polymer used as an additive in lubricant oil. J Mater Chem. 2011;21:13213–13222.
  • Zhai W, Srikanth N, Kong LB, et al. Carbon nanomaterials in tribology. Carbon. 2017;119:150–171.
  • Ewen JP, Gattinoni C, Thakkar FM, et al. Nonequilibrium molecular dynamics investigation of the reduction in friction and wear by carbon nanoparticles between iron surfaces. Tribol Lett. 2016;63:38.
  • Krueger A. Current issues and challenges in surface chemistry ofnanodiamonds. In: Nanodiamonds. Elsevier. 2017. p. 183–242.
  • Zhang Y, Tamijani AA, Taylor ME, et al. Molecular surface functionalization of carbon materials via radical-induced grafting of terminal alkenes. J Am Chem Soc. 2019;141:8277–8288.
  • Rahman MM, Hussein MA, Alamry KA, et al. Sensitive methanol sensor based on PMMA-G-CNTs nanocomposites deposited onto glassy carbon electrodes. Talanta. 2016;150:71–80.
  • Philip B, Abraham JK, Chandrasekhar A, et al. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct. 2003;12:935.
  • Li Y, Wang HC, Yang MJ. n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sens.Actuat. B. Chem. 2007;121:496–500.
  • Radtke M, Bernardi E, Slablab A, et al. Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: achievements and challenges. Nano Futures. 2019;3:042004.
  • Sakakibara R. Electrochemical modulation of fluorescence of nitrogen vacancy centers in nanodiamonds for voltage sensing applications, [ Doctoral dissertation], Massachusetts Institute of Technology, 2015.
  • Goh PS, Ismail AF, Sanip SM, et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separat Purificat Technol. 2011;81:243–264.
  • Dong G, Li H, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A. 2013;1:4610–4630.
  • Ma W, Zhao Y, Li Y, et al. Synthesis of hydrophilic carbon nanotubes by grafting poly (methyl methacrylate) via click reaction and its effect on poly(vinylidene fluoride)-carbon nanotube composite membrane properties. Appl Surf Sci. 2018;435:79–90.
  • Zamani M, Aghajanzadeh M, Molavi H, et al. Thermally oxidized nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study. J Inorg Organomet Polym Mater. 2019;29:701–709.
  • Liu Z, Bai G, Huang Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon. 2007;45:821–827.
  • Huang YL, Yuen SM, Ma CC, et al. Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly methyl methacrylate (PMMA) composites. Compos Sci Technol. 2009;69:1991–1996.
  • Kausar A, Rafique I, Muhammad B. Electromagnetic interference shielding of polymer/nanodiamond, polymer/carbon nanotube, and polymer/nanodiamond–carbon nanotube nanobifiller composite: a review. Polym Plast Technol Engineer. 2017;56:347–363.
  • Teo AJ, Mishra A, Park I, et al. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2016;2:454–472.
  • Tofail SA, Koumoulos EP, Bandyopadhyay A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21:22–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.