153
Views
3
CrossRef citations to date
0
Altmetric
Review

Polyamide/nanosilica nanocomposite: a chronicle of design and high-tech progressions

ORCID Icon
Pages 52-63 | Received 12 Oct 2020, Accepted 03 Jan 2021, Published online: 13 Jan 2021

References

  • Alhawat M, Ashour A, El-Khoja AA. Properties of concrete incorporating different nano silica particles. Mater Res Innovat. 2020;24(3):133–144.
  • Cadena MJ, Parker JC, Raman A, et al. Fabrication and characterization of mesopores in a silica gel matrix. Mater Res Innovat. 2018;22:242–246.
  • Jangra S, Duhan S, Goyat MS, et al. Influence of functionalized mesoporous silica in controlling azathioprine drug release and cytotoxicity properties. Mater Res Innovat. 2017;21:413–425.
  • Kausar A. In-situ modified graphene reinforced polyamide 1010/poly (ether amide): mechanical, thermal, and barrier properties. Mater Res Innovat. 2019;23:191–199.
  • Han Y, Dong W, Chen Z, et al. Effects of hydrophobic fumed silica on structure and properties of nonionic waterborne polyurethane/silica nanocomposites prepared by in situ polymerization. Mater Res Innovat. 2016;20:247–253.
  • Liu P, Tian J, Liu W, et al. Preparation and characterization of polystyrene grafted nano-sized silica. Mater Res Innovat. 2003;7:105–109.
  • Yousefvand H, Jafari A. Enhanced oil recovery using polymer/nanosilica. Procedia Mater Sci. 2015;11:565–570.
  • Gojzewski H, Sadej M, Andrzejewska E, et al. Nanoscale Young’s modulus and surface morphology in photocurable polyacrylate/nanosilica composites. Eur Polym J. 2017;88:205–220.
  • Romo-Uribe A. Dynamics and viscoelastic behavior of waterborne acrylic polymer/silica nanocomposite coatings. Prog Org Coat. 2019;129:125–132.
  • Jeelani PG, Mulay P, Venkat R, et al. Multifaceted application of silica nanoparticles. A review. Silicon. 2020;12:1337–1354.
  • Charithra MM, Manjunatha JG. Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. J Electrochem Sci Eng. 2020;10:29–40.
  • Hareesha N, Manjunatha JGG, Raril C, et al. Design of novel surfactant modified carbon nanotube paste electrochemical sensor for the sensitive investigation of tyrosine as a pharmaceutical drug. Adv Pharmaceut Bull. 2019;9:132.
  • Hareesha N, Manjunatha JG. Fast and enhanced electrochemical sensing of dopamine at cost-effective poly (DL-phenylalanine) based graphite electrode. J Electroanalyt Chem. 2020;878:114533.
  • Raril C, Manjunatha JG. A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem J. 2020;154:104575.
  • Prinith NS, Manjunatha JG. Polymethionine modified carbon nanotube sensor for sensitive and selective determination of L-tryptophan. J Electrochem Sci Eng. 2020;10. DOI:https://doi.org/10.5599/jese.774.
  • Hareesha N, Manjunatha JG. A simple and low-cost poly (dl-phenylalanine) modified carbon sensor for the improved electrochemical analysis of Riboflavin. J Sci : Adv Mater Dev. 2020. DOI:https://doi.org/10.1016/j.jsamd.2020.08.005
  • Pushpanjali PA, Manjunatha JG. Development of polymer modified electrochemical sensor for the determination of alizarin carmine in the presence of Tartrazine. Electroanalysis. 2020;32:2474–2480.
  • Amrutha BM, Manjunatha JG, Aarti Bhatt S, et al. Electrochemical analysis of evans blue by surfactant modified Carbon Nanotube paste electrode. J Mater Environ Sci. 2019;10:668–676.
  • Hareesha N, Manjunatha JG. Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin. Mater Res Innovat. 2020;24:349–362.
  • Hareesha N, Manjunatha JG. Elevated and rapid voltammetric sensing of riboflavin at poly(helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation. J Iranian Chem Soc. 2020;1-13.
  • Talay F, Gurel K, Gurel S, et al. Silicosis in manufacture of electric cable: report of four cases. J. Occupation. Health, 2007, 49, 405–410.
  • Slowing II, Vivero-Escoto JL, Wu CW, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–1288.
  • Vijayanathan V, Thomas T, Thomas TJ. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry. 2002;41:14085–14094.
  • Barik TK, Sahu B, Swain V. Nanosilica-from medicine to pest control. Parasitol Res. 2008;103:253–258.
  • Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature. 2006;444:267–269.
  • Panessa-Warren BJ, Warrren JB, Maye MM, et al. Nanoparticle interactions with living systems: in vivo and in vitro biocompatibility. In: Stefano B, editor. Nanoparticles and nanodevices in biological applications. Berlin Heidelberg: Springer; 2008. p. 1–45.
  • Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.
  • Kim JS, Yoon TJ, Yu KN, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006;89:338–347.
  • Kim IY, Joachim E, Choi H, et al. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed. 2015;11:1407–1416.
  • Singh LP, Bhattacharyya SK, Kumar R, et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Coll Interface Sci. 2014;214:17–37.
  • Braun U, Schartel B, Fichera MA, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6. Polym Degrad Stab. 2007;92:1528–1545.
  • Marchildon K. Polyamides - Still strong after seventy years. Macromol React Eng. 2011;5:22–54.
  • Diamond G, Murphy V, Boussie TR. Applications of high throughput experimentation to the production of commodity chemicals from renewable feedstocks. In: Hagemeyer A, Volpe AF Jr., editors. Mod. appl. high throughput R&D heterog. catal. Menlo Park, California, USA: Rennovia, Inc.; 2014. p. 288–309. Chapter 8.
  • Yamanobe T, Kurihara Y, Uehara H, et al. Structure and characterization of nylon 46. J Mol Struct. 2007;829:80–87.
  • Mooney B. The second green revolution? Production of plant-based biodegradable plastics. Biochem J. 2009;418:219–232.
  • Mutlu H, Meier MAR, Pa X U. 20 from renewable resources via metathesis and catalytic amidation. Macromol Chem Phys. 2009;210:1019–1025.
  • Kircher M. The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind Biotechnol. 2014;10:11–18.
  • Zhang G, Yang HW, Zhang SX, et al. Facile synthesis of processable semi-aromatic polyamide containing thioether units. J Macromol Sci A. 2012;49:414–423.
  • Ataei SM, Sarrafi Y, Hatami M. Naphthalene-ring containing diamine and resulting thermally stable polyamides. Eur Polym J. 2005;41:2887–2892.
  • Mahfuz H, Hasan M, Dhanak V. Reinforcement of nylon 6 with functionalized silica nanoparticles for enhanced tensile strength and modulus. Nanotechnology. 2008;19:1–7.
  • Fang XW, Wang BR, Chen FF. Different surface-modified nano-SiO2/MC nylon 6 composites. J Henan Univ. 2010;40:13–17.
  • Xu Q, Chen F, Li X, et al. The effect of surface functional groups of nanosilica on the properties of polyamide 6/SiO2 nanocomposite. Polish J Chem Technol. 2013;15:20–24.
  • Xu Q, Li X, Chen F, et al. Improving the mechanical properties of polyamide 6-nanosilica nanocomposites by combining masterbatch technique with in situ polymerization. J Brazilian Chem Soc. 2014;25:1218–1225.
  • Rakhshan N, Pakizeh M. The effect of chemical modification of SiO2 nanoparticles on the nanofiltration characteristics of polyamide membrane. Korean J Chem Eng. 2015;32:2524–2533.
  • Taghavi M, Ghaemy M, Nasab SMA, et al. Influence of ionic liquid on selective polycondensation of a new diamine-bisphenol: synthesis and properties of polyamides and their composites with modified nanosilica. Polymer. 2013;54:3828–3840.
  • Kong M, Huang Y, Chen G, et al. Retarded relaxation and breakup of deformed PA6 droplets filled with nanosilica in PS matrix during annealing. Polymer. 2011;52:5231–5236.
  • Liu J, Yi H, Lin H, et al. Tennis core strings of polyamide-6 modified by surface-capped nano-silica. Appl Surf Sci. 2013;265:704–708.
  • Mozhdehi AM, Bamoharram FF, Morsali A, et al. Comprehension of the role of created hydrogen bonds and adsorption energy in polyamide-nanosilica-Keggin hybrid/water on enhancement of concrete compressive strength: DFT calculations and experimental investigations. J Mol Liq. 2020;297:111912.
  • Gu H, Guo Y, Wong SY, et al. Effect of interphase and strain-rate on the tensile properties of polyamide 6 reinforced with functionalized silica nanoparticles. Compos Sci Technol. 2013;75:62–69.
  • Bucknall C, Paul DR. Polymer blends, formulation and performance. New York: John Wiley and Sons; 2000.
  • Nuzzo A, Bilotti E, Peijs T, et al. Nanoparticle-induced co-continuity in immiscible polymer blends – a comparative study on biobased PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer. 2014;55:4908–4919.
  • de Luna MS, Filippone G. . Effects of nanoparticles on the morphology of immiscible polymer blends – challenges and opportunities. Eur Polym J. 2016;79:198–218.
  • Scaffaro R, Botta L. Nanofilled thermoplastic-thermoplastic polymer blends. In: Thomas S, Shanks R, Chandrasekharakurup S, editors. Nanostructured polymer blends. United Kingdom: Elsevier; 2014. p. 133–160.
  • Baudouin AC, Auhl D, Tao F, et al. Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer. 2011;52:149–156.
  • Laoutid F, Francois D, Paint Y, et al. Morphology and properties of polyamide 6/poly(propylene) blends fine-tuned with nanosilica. Macromol Sym. 2012;321-322:84–90.
  • Melle S, Lask M, Fuller GG. Pickering emulsions with controllable stability. Langmuir. 2005;21:2158–2162.
  • Fenouillot F, Cassagnau P, Majesté J-C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer. 2009;50(6):1333–1350.
  • Foudazi R, Nazockdast H. Rheology and morphology of nanosilica-containing polypropylene and polypropylene/liquid crystalline polymer blend. J Appl Polym Sci. 2013;128:3501–3511.
  • Laoutid F, François D, Paint Y, et al. Using nanosilica to fine‐tune morphology and properties of polyamide 6/poly (propylene) blends. Macromol Mater Eng. 2013;298:328–338.
  • Ma X, Lee NH, Oh HJ, et al. Preparation and characterization of silica/polyamide-imide nanocomposite thin films. Nanoscale Res Lett. 2010;5:1846.
  • Kong M, Huang Y, Lv Y, et al. Flow-induced morphological instability in nanosilica-filled polyamide 6/polystyrene blends. Polymer. 2014;55:4348–4357.
  • Palacios JK, Sangroniz A, Eguiazabal JI, et al. Tailoring the properties of PP/PA6 nanostructured blends by the addition of nanosilica and compatibilizer agents. Eur Polym J. 2016;85:532–552.
  • Sangroniz L, Palacios JK, Fernández M, et al. Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur Polym J. 2016;83:10–21.
  • Chee CY, Yaacob II. Influence of nano-SiO 2/polyamide composites coating on thermic effect and optical properties of polyethylene film. Int J Mod Phys B. 2009;23:1395–1400.
  • Merlatti C, Perrin FX, Aragon E. Natural and artificial weathering characteristics of stabilized acrylic–urethane paints. Polym Degrad Stab. 2008;93:896–903.
  • Chee CY, Chen CY, Iskandar IY. Weathering effect on virgin polyethylene and polyethylene coated with polyamide/nanosilica composite coating. J Comput Theoretic Nanosci. 2012;9:1161–1164.
  • Feng Z, Guo J, Yan Y, et al. Modification of mesoporous silica with phosphotungstic acid and its effects on the combustion and thermal behavior of polylactic acid composites. Polym Degrad Stab. 2019;160:24–34.
  • Wang X, Sun J, Liu X, et al. An effective flame retardant containing hypophosphorous acid for poly (lactic acid): fire performance, thermal stability and mechanical properties. Polym Test. 2019;78:105940.
  • Zhan Z, Li B, Xu M, et al. Synergistic effects of nano-silica on aluminum diethylphosphinate/polyamide 66 system for fire retardancy. High Perform Polym. 2016;28:140–146.
  • Li YD, Qiang KG, Ma YZ, et al. Z.S. wu. friction and wear behavior of flame-sprayed polyamide 12/n-SiO_2 composite coatings [J]. Tribology. 2009;2:7.
  • Shen H, Wang S, Xu H, et al. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl4 in organic solution. J Membr Sci. 2018;565:145–156.
  • Li Q, Yu H, Wu F, et al. Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability. Appl Surf Sci. 2016;363:338–345.
  • Bao M, Zhu G, Wang L, et al. Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination. 2013;309:261–266.
  • Huang Y, Jin H, Yu P, et al. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalin Water Treat. 2016;57:20177–20187.
  • Lovineh SG, Asghari M, Khanbabaei G. CO2 permeation through poly (amide-6-b-ethylene oxide)-nanosilica membranes. Appl Surf Sci. 2014;318:176–179.
  • Liu X, Liu Y, Yang J, et al. Effects of the biaxial orientation on the mechanical and optical properties and shrinkage of polyamide 6‐66–montmorillonite–nanosilica nanocomposite films. J Appl Polym Sci. 2019;136:47504.
  • Maleki H, Durães L, García-González CA, et al. Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Coll Interf Sci. 2016;236:1–27.
  • Ang MBMY, Trilles CA, De Guzman MR, et al. Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Separat Purificat Technol. 2019;224:113–120.
  • Keivani Hafshejani M, Khazaei M, Langari A. Influence of the addition of nano-Silica particles as reinforcement on the tensile yield properties of polyamide 6 polymeric matrix used in medical applications. Life Sci J. 2013;10:3593–3596.
  • Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–3957.
  • Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–2433.
  • Gon M, Tanaka K, Chujo Y. Creative synthesis of organic–inorganic molecular hybrid materials. Bull Chem Soc Japan. 2017;90:463–474.
  • Evans RC. Harnessing self-assembly strategies for the rational design of conjugated polymer based materials. J Mater Chemi C. 2013;1:4190–4200.
  • Schumacher M, Ruppel M, Yuan J, et al. Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir. 2009;25:3407–3417.
  • Rodriguez-Ubinas E, Ruiz-Valero L, Vega S, et al. Applications of phase change material in highly energy-efficient houses. Ener Build. 2012;50:49–62.
  • Radhakrishnan B, Ranjan R, Brittain WJ. Surface initiated polymerizations from silica nanoparticles. Soft Matter. 2006;2:386–396.
  • Rong MZ, Zhang MQ, Zheng YX, et al. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer. 2001;42:3301–3304.
  • Jo C, Pugal D, Oh IK, et al. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci. 2013;38:1037–1066.
  • Sanchez C, Belleville P, Popall M, et al. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci. 2013;38:1232–1261.
  • Sarangapani R, Reddy ST, Sikder AK. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers. J Molecul Graph Model. 2015;57:114–121.
  • Tropin TV, Schmelzer JW, Aksenov VL. Modern aspects of the kinetic theory of glass transition. Physics-Uspekhi. 2016;59:42.
  • Ma X, Liu L, Zhang X, et al. Effect of interface structure regulation caused by variation of imidization rate on conduction current characteristics of PI/nano-Al2O3 three-layer composite films. Results Phys. 2018;9:819–824.
  • Lee SH, Stewart RJ, Park H, et al. Effect of nanoscale roughness on adhesion between glassy silica and polyimides: A molecular dynamics study. J Phys Chem C. 2017;121:24648–24656.
  • Goyal S, Park HH, Lee SH, et al. Characterizing the fundamental adhesion of polyimide monomers on crystalline and glassy silica surfaces: A molecular dynamics study. J Phys Chem C. 2016;120:23631–23639.
  • Zhao S, Zhang Y, Liu Y, et al. Preparation and optimization of calcium pectate beads for cell encapsulation. J Appl Polym Sci. 2018;135:45685.
  • Zhang T, Han BJ, Yu J, et al. Enhancement of dielectric constant of polyimide by doping with modified silicon dioxide@ titanium carbide nanoparticles. RSC Adv. 2018;8:16696–16702.
  • Liu X, Yin J, Kong Y, et al. Electrical and mechanical property study on three-component polyimide nanocomposite films with titanium dioxide and montmorillonite. Thin Solid Films. 2013;544:352–356.
  • Chuang W, Geng-sheng J, Lei P, et al. Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin. Results Phys. 2018;9:886–896.
  • Duan JK, Shao SX, Li Y, et al. Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iran Polym J. 2012;21:109–120.
  • Morshed AKMM, Paul TC, Khan J. Effect of Cu–Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl Therm Eng. 2013;51:1135–1143.
  • Gu H, Tadakamalla S, Zhang X, et al. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J Mater Chem C. 2013;1:729–743.
  • Senthilkumar V, Balaji A, Narayanasamy R. Analysis of hot deformation behavior of Al 5083–TiC nanocomposite using constitutive and dynamic material models. Mater Des. 2012;37:102–110.
  • Yoo Y, Spencer MW, Paul DR. Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer. 2011;52:180–190.
  • Shi Y, Peterson S, Sogah DY. Surfactant-free method for the synthesis of poly (vinyl acetate) masterbatch nanocomposites as a route to ethylene vinyl acetate/silicate nanocomposites. Chem Mater. 2007;19:1552–1564.
  • Xu XM, Li BJ, Lu HM, et al. The interface structure of nano-SiO2/PA66 composites and its influence on material’s mechanical and thermal properties. Appl Surf Sci. 2007;254:1456–1462.
  • Rudzinski S, Häussler L, Harnisch CH, et al. Glass fibre reinforced polyamide composites: thermal behaviour of sizings. Compos Part A Appl S. 2011;42:157–164.
  • McLauchlin A, Bao XJ, Zhao F. Organoclay polybutylene terephthalate nanocomposites using dual surfactant modified montmorillonite prepared by the masterbatch method. Appl Clay Sci. 2011;53:749–753.
  • Shah RK, Paul DR. Nylon 6 nanocomposites prepared by a melt mixing masterbatch process. Polymer. 2004;45:2991–3000.
  • Benali S, Peeterbroeck S, Brocorens P, et al. Chlorinated polyethylene nanocomposites using PCL/clay nanohybrid masterbatches. Eur Polym J. 1673-1685;2008(44).
  • Scaffaro R, Maio A. A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing. Chem Engineer J. 2017;308:1034–1047.
  • Yazdimamaghani M, Pourvala T, Motamedi E, et al. Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials. 2013;6:3727–3741.
  • Sallehuddin NJ, Ismail H. Effects of silane treatment on tensile properties and surface morphology of kenaf bast filled natural rubber latex foam. In AIP Conference Proceedings AIP Publishing LLC. 2020;2267:020012.
  • Heo GH, Park JG, Song KC, et al. Improving the interfacial bond properties of the carbon fiber coated with a Nano-SiO2 particle in a cement paste matrix. Adv Civil Eng. 2020;2020:8838179.
  • Kajihara K, Hiruta K, Kanamura K. Cosolvent-free sol–gel dip-coating of silica films from tetraalkoxysilane–water binary systems: precursor solutions of long pot life and their characterization by nuclear magnetic resonance spectroscopy. J Ceram Soc Jpn. 2020;128:772–782.
  • Mahadik SA, Kavale MS, Mukherjee SK, et al. Transparent superhydrophobic silica coatings on glass by sol–gel method. Appl Surf Sci. 2010;257:333–339.
  • Cheng P, Zheng M, Jin Y, et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. Mater Lett. 2003;57:2989–2994.
  • Ruan WH, Zhang MQ, Rong MZ, et al. Polypropylene composites filled with in-situ grafting polymerization modified nano-silica particles. J Mater Sci. 2004;39:3475–3478.
  • Elkady M, Hassan HS, Hashim A. Immobilization of magnetic nanoparticles onto amine-modified nano-silica gel for copper ions remediation. Materials. 2016;9:460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.