348
Views
3
CrossRef citations to date
0
Altmetric
Review

Polyaniline/graphene nanoplatelet nanocomposite towards high-end features and applications

ORCID Icon
Pages 249-261 | Received 22 Mar 2021, Accepted 20 May 2021, Published online: 03 Jun 2021

References

  • Moosvi SK, Naqash WG, Najar MH, et al. Current–voltage characteristics and thermal studies of polypyrrole-octacyanotungstate composite. Mater Res Innovat. 2020;1-6.
  • Kausar A. High-performance competence of polyaniline-based nanomaterials. Mater Res Innovat. 2020;24:113–122.
  • Schaffrinna R, Schwager M. Effect of interchain interactions on the optical characteristics of polythiophene derivatives. Mater Res Innovat. 2021;25:23–28.
  • Kausar A. Versatile epoxy/polyaniline and derived nanocomposite: from strategic design to advance application. Mater Res Innovat. 2020;1-10.
  • Cao J, Sun Q, Miao F, et al. Preparation and thermoelectric power factor of Ag loaded carbon nanotubes/polyaniline composites. Mater Res Innovat. 2014;18:S4-540-S4-543.
  • Silakhori M, Metselaar H, Mahlia T, et al. Preparation and characterisation of microencapsulated paraffin wax with polyaniline-based polymer shells for thermal energy storage. Mater Res Innovat. 2014;18:S6-480-S6-484.
  • Kausar A. Nanodiamond: a multitalented material for cutting edge solar cell application. Mater Res Innovat. 2018;22:302–314.
  • Boujar Dolabi M, Azimi A, Hossein Hosseini S. Preparation of thermal infrared and microwave absorber using WO3/MnFe3O4/polyaniline nanocomposites. Mater Res Innovat. 2020;24:326–334.
  • Brostow W, Lobland HEH. Materials: introduction and applications. John Wiley & Sons; 2016.
  • Kausar A. Graphene nanoplatelet reinforced polyacrylonitrile/poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite foams: physical properties and ion detoxification. . Materials Research Innovations. 2020;24(1):28–38.
  • Baker J, Deganello D, Gethin D, et al. Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell. Mater Res Innovat. 2014;18:86–90.
  • Kausar A. Applications of polymer/graphene nanocomposite membranes: a review. Mater Res Innovat. 2019;23:276–287.
  • Zamiri G, Bagheri S, Shahnazar S, et al. Progress on synthesis, functionalisation and applications of graphene nanoplatelets. Mater Res Innovat. 2016;20:365–374.
  • Grigorenko A, Polini M, Novoselov K. Graphene plasmonics. Nature Photon 2012;6:749–758.
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534.
  • Papanikolaou I, Arena N, Al-Tabbaa A. Graphene nanoplatelet reinforced concrete for self-sensing structures–A lifecycle assessment perspective. J. Clean. Product 2019;240:118202.
  • Shen J, Hu Y, Li C, et al. Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir. 2009;25:6122–6128.
  • Shen J, Hu Y, Shi M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater. 2009;21:3514–3520.
  • Cruz-Silva E, Jia X, Terrones H, et al. Edge–edge interactions in stacked graphene nanoplatelets. ACS Nano. 2013;7:2834–2841.
  • Longo A, Verucchi R, Aversa L, et al. Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment. Nanotechnology. 2017;28:224002.
  • Fan X, Chang DW, Chen X, et al. Functionalized graphene nanoplatelets from ball milling for energy applications. Curr. Opin. Chem. Engineer 2016;11:52–58.
  • Rashad M, Pan F, Zhang J, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloys Comp. 2015;646:223–232.
  • An J-C, Kim HJ, Hong I. Preparation of Kish graphite-based graphene nanoplatelets by GIC (graphite intercalation compound) via process. J. Indus. Engineer. Chem 2015;26:55–60.
  • An J-C, Lee EJ, Hong I. Preparation of the spheroidized graphite-derived multi-layered graphene via GIC (graphite intercalation compound) method. J. Indus. Engineer. Chem 2017;47:56–61.
  • Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J. Magnesium Alloys. 2016;4:270–277.
  • Baig Z, Mamat O, Mustapha M, et al. Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrason Sonochem. 2018;45:133–149.
  • Young RJ, Liu M, Kinloch IA, et al. The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos Sci Technol. 2018;154:110–116.
  • Moriche R, Prolongo S, Sánchez M, et al. Morphological changes on graphene nanoplatelets induced during dispersion into an epoxy resin by different methods. Compos B: Eng. 2015;72:199–205.
  • Shrivas AG, Mahajan A. Effect of variation in preparation temperature on the conductivity of PANI. Optoelectron Adv Mat. 2008;2:859–862.
  • Shinde SS, Kher JA. A review on polyaniline and its noble metal composites. Int. J. Innovative Res. Sci. Eng. Technol 2014;3:16570–16576.
  • Kulkarni S, Joshi S, Lokhande C. Facile and efficient route for preparation of nanostructured polyaniline thin films: schematic model for simplest oxidative chemical polymerization. Chem Engineer J. 2011;166:1179–1185.
  • Farrage NM, Oraby AH, Abdelrazek EM, et al. Molecular Electrostatic Potential Mapping for PANI Emeraldine Salts and Ag@ PANI core-shell. Egyptian J Chem. 2019;62:99–109.
  • Awuzie C. Conducting polymers. Mater Today: Proceed. 2017;4:5721–5726.
  • Yehgambaram P, Prasad R, Jakka VS, et al. Antifungal activity of nanostructured polyaniline combined with fluconazole. J. Pharmacy Res 2013;6:26–31.
  • Li W, Wan M. Stability of polyaniline synthesized by a doping–dedoping–redoping method. J Appl Polym Sci. 1999;71:615–621.
  • John R, Wallace G. Doping-dedoping of polypyrrole: a study using current-measuring and resistance-measuring techniques. J Electroanalyt Chem. 1993;354:145–160.
  • Baba A, Tian S, Stefani F, et al. Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanalyt Chem. 2004;562:95–103.
  • Kim B, Koncar V, Dufour C. Polyaniline‐coated PET conductive yarns: study of electrical, mechanical, and electro‐mechanical properties. J Appl Polym Sci. 2006;101:1252–1256.
  • Matveeva E, Calleja RD, Parkhutik V. Impedance study of chemically synthesized emeraldine form of polyaniline. Electrochim Acta. 1996;41:1351–1357.
  • Chandrakanthi N, Careem M. Thermal stability of polyaniline. Polym Bull. 2000;44:101–108.
  • Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci. 2015;49:79–120.
  • Mori T, Miyamoto A, Takahashi N, et al. Promotion effects of vanadium, niobium, molybdenum, tungsten, and rhenium oxides on surface reactions in the carbon monoxide hydrogenation over ruthenium/aluminum oxide catalyst. J Phys Chem. 1986;90:5197–5201.
  • Brown RM. Jr, and I. M. Saxena. Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem. 2000;38:57–67.
  • Xia H, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater. 2002;14:2158–2165.
  • Fujii S, Nishimura Y, Aichi A, et al. .Facile one-step route to polyaniline–silver nanocomposite particles and their application as a colored particulate emulsifier. Synth Met. 2010;160:1433–1437.
  • Mallick K, Witcomb MJ, Scurrell MS, et al. In-situ chemical synthesis route for a fiber shaped gold-polyaniline nanocomposite. Gold Bull 2008;41:246–250.
  • Kutanis S, Karakışla M, Akbulut U, et al. The conductive polyaniline/poly (ethylene terephthalate) composite fabrics. Compos A: Appl Sci Manufact. 2007;38:609–614.
  • Moiz SA, Imran SM. S. M. KIMa, A. M. Nahhas, and H. T. KIMa. Effect of isopropyl alcohol for bimodal dispersion of silver nanoparticles inside polyaniline emeraldine base thin film. Optoelectron. Adv. Mater-Rapid Communicat 2012;6:1113–1117.
  • Ray A, Asturias G, Kershner D, et al. Polyaniline: doping, structure and derivatives. Synth Met. 1989;29:141–150.
  • Bishop A, Gouma P. Leuco-Emeraldine Based Polyaniline Poly-Vinyl-Pyrrolidone Electrospun Composites And Bio-Composites: a Preliminary Study Of Sensing Behavior. Rev Adv Mater Sci. 2005;10:209–214.
  • Barta P, Kugler T, Salaneck W, et al. Electornic structure of emeraldine and pernigraniline base: a joint theoretical and experimental study. Synth Met. 1998;93:83–87.
  • D’Aprano G, Leclerc M, Zotti G. Stabilization and characterization of pernigraniline salt: the. acid-doped. form of fully oxidized polyanilines. Macromolecules. 1992;25:2145–2150.
  • Chiang J-C, MacDiarmid.‘Polyaniline’: AG. protonic acid doping of the emeraldine form to the metallic regime. Synth Met. 1986;13:193–205.
  • Cochet M, Louarn G, Quillard S, et al. Theoretical and experimental vibrational study of polyaniline in base forms: non‐planar analysis. Part I. J. Raman Spectroscop 2000;31:1029–1039.
  • Chen X, Yuan CA, Wong CK, et al. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline. Proced. Engineer 2010;5:1268–1271.
  • Quillard S, Louarn G, Lefrant S, et al. Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B. 1994;50:12496.
  • Jamadade V, Dhawale D, Lokhande C. Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synth Met. 2010;160:955–960.
  • Ram MK, Mascetti G, Paddeu S, et al. Optical, structural and fluorescence microscopic studies on reduced form of polyaniline: the leucoemeraldine base. Synth Met. 1997;89:63–69.
  • Neelakandan R, Madhusoothanan M. Electrical resistivity studies on polyaniline coated polyester fabrics. J. Engineer. Fibers Fabr 2010;5:155892501000500304.
  • Trivedi DC, Dhawan SK. Shielding of electromagnetic interference using polyaniline. Synth Met. 1993;59:267–272.
  • Trivedi DC, Dhawan SK. Antistatic applications of conducting polyaniline. Polym Adv Technol. 1993;4:335–340.
  • Mohamoud MA. Unexpected redox enhancement and electrochemical pseudo-capacitance performance of polyaniline/poly(vinyl alcohol)(PAn/PVA) composite films. Electrochim Acta. 2014;139:201–208.
  • Grzeszczuk M, Szostak R. Electrochemical and Raman studies on the redox switching hysteresis of polyaniline. Solid State Ion. 2003;157:257–262.
  • Benyoucef A, Huerta F, Ferrahi MI, et al. Voltammetric and in situ FT-IRS study of the electropolymerization of o-aminobenzoic acid at gold and graphite carbon electrodes: influence of pH on the electrochemical behaviour of polymer films. J Electroanal Chem. 2008;624:245–250.
  • Singla M, Awasthi S, Srivastava A. Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids. Sens Actuat B: Chem. 2007;127:580–585.
  • Mohamoud MA, Hillman AR. The effect of anion identity on the viscoelastic properties of polyaniline films during electrochemical film deposition and redox cycling. Electrochim Acta. 2007;53:1206–1216.
  • Lin Y-C, Hsu F-H, Wu T-M. Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth Met. 2013;184:29–34.
  • Zhang WL, Liu YD, Choi HJ. Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. Carbon. 2012;50:290–296.
  • Meriga V, Valligatla S, Sundaresan S, et al. Optical, electrical, and electrochemical properties of graphene based water soluble polyaniline composites. J Appl Polym Sci. 2015;132.
  • Moraes SR, Huerta-Vilca D, Motheo AJ. Corrosion protection of stainless steel by polyaniline electrosynthesized from phosphate buffer solutions. Prog Org Coat. 2003;48:28–33.
  • Durai L, Gopalakrishnan A, Vishnu N, et al. Polyaniline Sheathed Black Phosphorous: a Novel, Advanced Platform for Electrochemical Sensing Applications. Electroanalysis. 2020;32:238–247.
  • Ng F, Couture G, Philippe C, et al. Bio-based aromatic epoxy monomers for thermoset materials. Molecules. 2017;22:149.
  • Kraljić M, Mandić Z, Duić L. Inhibition of steel corrosion by polyaniline coatings. Corros Sci. 2003;45:181–198.
  • Österholm J-E, Cao Y, Klavetter F, et al. Emulsion polymerization of aniline. Polymer. 1994;35:2902–2906.
  • Mello HJNPD, Mulato M. Effect of aniline monomer concentration on PANI electropolymerization process and its influence for applications in chemical sensors. Synth Met. 2018;239:66–70.
  • Wei Y, Tang X, Sun Y, et al. A study of the mechanism of aniline polymerization. J Polym Sci A: Polym Chem. 1989;27:2385–2396.
  • Veerasubramani GK, Krishnamoorthy K, Radhakrishnan S, et al. In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications. J. Indus. Engineer. Chem 2016;36:163–168.
  • Zhou Y, She W, Hou D, et al. Modification of incorporation and in-situ polymerization of aniline on the nano-structure and meso-structure of calcium silicate hydrates. Construct. Build. Mater 2018;182:459–468.
  • Feng W, Bai X, Lian Y, et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon. 2003;41:1551–1557.
  • Mao L, Zhang K, Chan HSO, et al. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J Mater Chem. 2012;22:80–85.
  • Noh YJ, Joh H-I, Yu J, et al. Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Scientif. Rep 2015;5:9141.
  • Wei T, Luo G, Fan Z, et al. Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon. 2009;47:2296–2299.
  • Liu S, Tian J, Wang L, et al. Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules. 2010;43:10078–10083.
  • Zhang K, Zhang LL, Zhao X, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater. 2010;22:1392–1401.
  • Zhou D, Li Y, Wang J, et al. Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB–SDBS mixed surfactants. Mater Lett. 2011;65:3601–3604.
  • Nakagaito AN, Nogi M, Yano H. Displays from transparent films of natural nanofibers. Mrs Bull. 2010;35:214–218.
  • Andrady AL. Science and technology of polymer nanofibers. John Wiley & Sons; 2008.
  • Xu D, Xu Q, Wang K, et al. Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl Mater Interf. 2014;6:200–209.
  • Zhou S, Zhang H, Zhao Q, et al. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon. 2013;52:440–450.
  • Wang G, Yang Z, Li X, et al. Synthesis of poly (aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon. 2005;43:2564–2570.
  • Fowler JD, Allen MJ, Tung VC, et al. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3:301–306.
  • Wang H, Hao Q, Yang X, et al. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Ma3ter. Interf 2010;2:821–828.
  • Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer. 2012;53:4202–4210.
  • Das AK, Karan SK, Khatua B. High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta. 2015;180:1–15.
  • Khasim S. Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Res. Phys 2019;12:1073–1081.
  • Al-Hartomy OA, Khasim S, Roy A, et al. Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases. Appl Phys A. 2019;125:1–9.
  • Shih Y-C, Lin H-L, Lin K-F. Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells. J Electroanalyt Chem. 2017;794:112–119.
  • Badi N, Khasim S, Roy AS. Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J Mater Sci: Mater Electron. 2016;27:6249–6257.
  • Teo W-E, Ramakrishna S. Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol. 1804-1817;2009(69).
  • Teo W, Liao S, Chan C, et al. Remodeling of three-dimensional hierarchically organized nanofibrous assemblies. <![CDATA[Current Nanoscience]]>. 2008;4(4):361–369.
  • Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. J Mater Chemi. 2008;18(44):5326–5334.
  • Martin DC, Abidian MR. Conducting polymer nanotube actuators for precisely controlled release of medicine and bioactive molecules, ed: Google Patents, 2015.
  • Ismail YA, Shin MK, Kim SJ. A nanofibrous hydrogel templated electrochemical actuator: from single mat to a rolled-up structure. Sensors and Actuators B: Chemical. 2009;136(2):438–443.
  • Persano L, Camposeo A, Pisignano D. Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci. 2015;43:48–95.
  • Baker CO, Shedd B, Innis PC, et al. Monolithic actuators from flash‐welded polyaniline nanofibers. Adv Mater. 2008;20:155–158.
  • Jager EW, Smela E, Inganäs O. Microfabricating conjugated polymer actuators. Science. 2000;290:1540–1545.
  • Okamoto T, Kato Y, Tada K, et al. Actuator based on doping/undoping-induced volume change in anisotropic polypyrrole film. Thin Solid Films. 2001;393:383–387.
  • Otero T, Cortes M. Artificial muscle: movement and position control. Chem Commun. 2004;284-285.
  • Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineer 2005;11:101–109.
  • Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1:15.
  • Venugopal J, Low S, Choon AT, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B. 2008;84:34–48.
  • Yang X, Li B, Wang H, et al. Anticorrosion performance of polyaniline nanostructures on mild steel. Prog Org Coat. 2010;69:267–271.
  • Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353:1137–1140.
  • Chung D. Materials for electromagnetic interference shielding. J. Mater. Engineer. Perform 2000;9:350–354.
  • Ji H, Zhao R, Zhang N, et al. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater 2018;10:749–760.
  • Yang Y, Gupta MC, Dudley KL, et al. Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005;5:2131–2134.
  • Wan M, Li J, Li S. Microtubules of polyaniline as new microwave absorbent materials. Polym Adv Technol. 2001;12:651–657.
  • Liu C, Jiao Y, Zhang L, et al. Electromaganic wave absorbing property of polyaniline/polystylene composites. Acta Metallurgica Sinica-Chinese Ed 2007;43:409.
  • Kumar S, Purohit R, Malik M. Properties and applications of polymer matrix nano composite materials. Mater Today: Proceed. 2015;2:3704–3711.
  • Saini P, Choudhary V, Singh B, et al. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys. 2009;113:919–926.
  • Wasfi A, Ismael H. Characterization of Polyaniline/Single-Walled Carbon Nanotube Composite Films Prepared by Plasma Polymerization. Acta Physica Polonica, A 2019;135.
  • Liu F, Dong S, Zhang Z, et al. Polyaniline/MWCNT Nanocomposite as Sensor for Electroanalytical Determination of Phenol in Oil Field Wastewater. Int J Electrochem Sci. 2019;14:9122–9131.
  • Wang CC, Song JF, Bao HM, et al. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater. 2008;18:1299–1306.
  • Singh PR, Mahajan S, Rajwade S, et al. EC-AFM investigation of reversible volume changes with electrode potential in polyaniline. J Electroanalyt Chem. 2009;625:16–26.
  • Tseng RJ, Huang J, Ouyang J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 2005;5:1077–1080.
  • Wu S, Tai Q, Yan F. Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers. J Phys Chem C. 2010;114:6197–6200.
  • Olson DC, Shaheen SE, Collins RT, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J Phys Chem C. 2007;111:16670–16678.
  • Tai Q, Zhao X, Yan F. Hybrid solar cells based on poly(3-hexylthiophene) and electrospun TiO2 nanofibers with effective interface modification. J Mater Chem. 2010;20:7366–7371.
  • Yun S, Lim S. Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment. J Solid State Chem. 2011;184:273–279.
  • Babu VJ, Vempati S, Sundarrajan S, et al. Effective nanostructred morphologies for efficient hybrid solar cells. Solar Ener 2014;106:1–22.
  • Chen JY, Wu HC, Chiu YC, et al. Plasmon‐Enhanced Polymer Photovoltaic Device Performance Using Different Patterned Ag/PVP Electrospun Nanofibers. Adv. Ener. Mater 2014;4:1301665.
  • Xian Y, Hu Y, Liu F, et al. Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens Bioelectron. 1996-2000;2006(21).
  • Ahuja T, Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuat B: Chem. 2009;136:275–286.
  • Toprakci HA, Kalanadhabhatla SK, Spontak RJ, et al. Polymer nanocomposites containing carbon nanofibers as soft printable sensors exhibiting strain‐reversible piezoresistivity. Adv Funct Mater. 2013;23:5536–5542.
  • Wang Y, Coti KK, Wang J, et al. Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array. Nanotechnology. 2007;18:424021.
  • Dan Y, Cao Y, Mallouk TE, et al. Gas sensing properties of single conducting polymer nanowires and the effect of temperature. Nanotechnology. 2009;20:434014.
  • Cao Y, Kovalev AE, Xiao R, et al. Electrical transport and chemical sensing properties of individual conducting polymer nanowires. Nano Lett. 2008;8:4653–4658.
  • Ke F, Liu Y, Xu H, et al. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Compos Sci Technol. 2017;142:286–293.
  • Shi C, Hu L, Guo K, et al. Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high‐performance supercapacitors in universal electrolyte. Adv. Sustain. Sys 2017;1:1600011.
  • Masouras A, Giannopoulos D, Hasa B, et al. Hybrid graphene nanoplatelet/manganese oxide electrodes for solid-state supercapacitors and application to carbon fiber composite multifunctional materials. J. Ener. Storag 2019;23:515–525.
  • Han J, Zhang LL, Lee S, et al. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano. 2013;7:19–26.
  • El Rhazi M, Majid S, Elbasri M, et al. Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. Int. Nano Lett 2018;8:79–99.
  • Meng FL, Guo Z, Huang XJ. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trend. Anal. Chem 2015;68:37–47.
  • Ansari MO, Khan MM, Ansari SA, et al. Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films. Mater Lett. 2014;114:159–162.
  • Zamiri G, Haseeb ASMA. Recent trends and developments in graphene/conducting polymer nanocomposites chemiresistive sensors. Materials. 2020;13:3311.
  • Zamani FG, Moulahoum H, Ak M, et al. Current trends in the development of conducting polymers-based biosensors. TrAC Trend. Anal. Chem 2019;118:264–276.
  • Joseph J, Koroth AK, John DA, et al. Highly filled multilayer thermoplastic/graphene conducting composite structures with high strength and thermal stability for electromagnetic interference shielding applications. J Appl Polym Sci. 2019;136:47792.
  • Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth Met. 2021;272:116664.
  • Zhang Y, Yang Z, Pan T, et al. Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos A: Appl Sci Manufact. 2020;137:105994.
  • Karteri I, Altun M, Gunes M. Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets. J Mater Sci: Mater Electron. 2017;28:6704–6711.
  • Yuan S, Tang Q, He B, et al. Efficient quasi-solid-state dye-sensitized solar cells employing polyaniline and polypyrrole incorporated microporous conducting gel electrolytes. J Pow Sour. 2014;254:98–105.
  • Yuan S, Tang Q, He B, et al. Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. J Pow Sour. 2014;260:225–232.
  • Kavan L, Yum JH, Nazeeruddin MK, et al. Graphene nanoplatelet cathode for Co (III)/(II) mediated dye-sensitized solar cells. Acs Nano. 2011;5:9171–9178.
  • Lemos HG, Barba D, Selopal GS, et al. Water-dispersible polyaniline/graphene oxide counter electrodes for dye-sensitized solar cells: influence of synthesis route on the device performance. Sol. Ener 2020;207:1202–1213.
  • Shahid MU, Mohamed NM, Muhsan AS, et al. Few-layer graphene supported polyaniline (PANI) film as a transparent counter electrode for dye-sensitized solar cells. Diam Relat Mater. 2019;94:242–251.
  • Güryel S, Walker M, Geerlings P, et al. Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites. Phys Chem Chem Phys. 2017;19:12959–12969.
  • Güryel S, Alonso M, Hajgató B, et al. A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J. Molecul. Model 2017;23:1–14.
  • Wan C, Chen B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem. 2012;22:3637–3646.
  • Cheng X, Yokozeki T, Wu L, et al. Electrical conductivity and interlaminar shear strength enhancement of carbon fiber reinforced polymers through synergetic effect between graphene oxide and polyaniline. Compos A: Appl Sci Manufact. 2016;90:243–249.
  • Sheng X, Cai W, Zhong L, et al. Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Indus Eng Chem Res. 2016;55:8576–8585.
  • Wang Q, Wang Y, Meng Q, et al. Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Adv. 2017;7:2796–2803.
  • Pang AL, Husin MR, Arsad A, et al. Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites. J Mater Sci: Mater Electron. 2021;1-10.
  • Bel T, Muhammettursun M, Kocacinar E, et al. Improvement of thermal stability and gamma‐ray absorption in microwave absorbable poly (methyl methacrylate)/graphene nanoplatelets nanocomposite. J Appl Polym Sci. 50897.
  • Sharma AK, Sharma AK, Sharma R. Synthesis and study of polyaniline/MWCNT composite for optoelectronic application. Bull Mater Sci. 2021;44:1–8.
  • Demir F. Effect of aluminum reinforcement on the structural, physicochemical, and electrochemical properties of polyaniline-derived polymer/aluminum composites by in situ polymerization. Electrochim Acta. 2021;138444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.