89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Studies on superparamagnetic behaviour of Ni100-xCux alloy films deposited by DC magnetron sputtering

, &
Pages 351-356 | Received 29 Jun 2021, Accepted 25 Sep 2021, Published online: 02 Oct 2021

References

  • Batlle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys. n.d.;35. DOI:10.1088/0022-3727/35/6/201.
  • Miguel OB, Leconte Y, Morales MP, et al. Laser pyrolysis preparation of SiO2-coated magnetic nanoparticles for biomedical applications. J Magn Magn Mater. 2005;290–291:272–275. Available from: https://doi.org/10.1016/j.jmmm.2004.11.207
  • Barthel W, Markwardt F. Aggregation of blood platelets by Adrenaline and its uptake. Biochem Pharmacol. 1975;24:1903–1904.
  • Meza M. Application of magnetic particles in immunoassays. In Häfeli U, Schütt W, Teller J, et al. editors. Scientific and clinical applications of magnetic carriers. Boston (MA): Springer US; 1997. p. 303–309. DOI:10.1007/978-1-4757-6482-6_22
  • Sun S. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287:1989–1992.
  • White RL, New RMH, Pease RFW. Patterned media: a viable route to 50 Gbits/in2 for magnetic recording? In: Digests of the Magnetic Recording Conference “Magnetic Recording Media”; Santa Clara, CA: IEEE; 1996. p. F4–F4. DOI:10.1109/MRC.1996.658186
  • Rosensweig RE. Process concepts using field-stabilized two-phase fluidized flow. J Electrost. 1995;34:163–187.
  • Corot C, Robert P, Idee J, et al. Recent advances in iron oxide nanocrystal technology for medical imaging☆. Adv Drug Deliv Rev. 2006;58:1471–1504.
  • Häfeli U, Schütt W, Teller J, et al., Scientific and clinical applications of magnetic carriers.
  • Merbach A, Helm L, Tóth É eds. The chemistry of contrast agents in medical magnetic resonance imaging: helm/the chemistry of contrast agents in medical magnetic resonance imaging. Chichester (UK): John Wiley & Sons, Ltd; 2013. DOI:10.1002/9781118503652
  • O’Grady K, White RL, Grundy PJ. Whither magnetic recording. J Magn Magn Mater. 1998;177–181:886–891.
  • Leccabue F, Sagredo V. Magnetism, magnetic materials and their applications: proceedings of III Latin American workshop. In: Magnetism, Magnetic Materials and Their Applications, WORLD SCIENTIFIC; Mérida, Venezuela; 1996. p. 1–382. DOI:10.1142/9789814530996
  • Hadjipanayis GC, Prinz GA, North Atlantic Treaty Organization, eds. Science and technology of nanostructured magnetic materials. New York: Plenum Press; 1991.
  • Dormann JL, Fiorani D, Tronc E, et al. Size and interaction effects on magnetic properties of fine particles. In: Hadjipanayis GC, Siegel RW editors. Nanophase Materials. Springer Netherlands: Dordrecht; 1994. p. 635–644. DOI:10.1007/978-94-011-1076-1_65
  • Brown WF. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130:1677–1686.
  • Fonseca FC, Goya GF, Jardim RF, et al. Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO 2. Phys Rev B. 2002;66:104406.
  • Sun X-C, Dong X, Toledo JA. Superparamagnetic properties of carbon-encapsulated Ni nanoparticle assemblies. J Nanosci Nanotechnol. 2001;1:291–294.
  • Seifollahi Bazarjani M, Müller MM, Kleebe H-J, et al. Saturation magnetization of superparamagnetic nickel nanoparticles in microporous polysilazane-derived ceramics and their gas permeation properties. ACS Appl Mater Interfaces. 2014;6:12270–12278.
  • Nejati K, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J. 2012;6:23.
  • Tadyszak K, Kertmen A, Coy E, et al. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles. J Magn Magn Mater. 2017;433:254–261.
  • Aghazadeh M, Ganjali MR. One-step electro-synthesis of Ni2+ doped magnetite nanoparticles and study of their supercapacitive and superparamagnetic behaviors. J Mater Sci: Mater Electron. 2018;29:4981–4991.
  • Ramírez Camacho MC, Sánchez Valdés CF, Curiel M, et al. Superparamagnetic state in La0.7Sr0.3MnO3 thin films obtained by rf-sputtering. Sci Rep. 2020;10:2568.
  • Brenner A. Electrodeposition of alloys. Principle and practice. New York and London: Academic Press; 1963. Band I: General Survey, Principles, and Alloys of Copper and of Silver. 714 S. mit 212 Bildern und 45 Tab. DIN A5. Preis: $ 24.-, Berichte Der Bunsengesellschaft Für Physikalische Chemie. 68 (1964) 309–309. DOI:10.1002/bbpc.19640680319.
  • Ma E, Atzmon M, Koch CC. Metastable, mechanically alloyed and nanocrystalline materials (proceedings of ISMANAM-2001). MRS Bull. 2002;27:817.
  • Tundermann JH, Tien JK, Howson TE. Updated by staff, nickel and nickel alloys. In: John Wiley & Sons, Inc, editor. Kirk-othmer encyclopedia of chemical technology. Hoboken (NJ): John Wiley & Sons, Inc; 2013. p. 1409031120211404.a01.pub3. DOI:10.1002/0471238961.1409031120211404.a01.pub3
  • Ghosh SK, Grover AK, Dey GK, et al. Structural characterization of electrodeposited nanophase Ni–Cu alloys. J Mater Res. 2006;21:45–61.
  • Casella IG, Gatta M. Electrodeposition and characterization of nickel-copper alloy films as electrode material in alkaline media. J Electrochem Soc. 2002;149:B465.
  • Hur S-G, Kim D-J, Kang B-D, et al. Effect of the deposition temperature on temperature coefficient of resistance in CuNi thin film resistors. J Vac Sci Technol B. 2004;22:2698.
  • Huang YW, Chao T-Y, Chen CC, et al. Power consumption reduction scheme of magnetic microactuation using electroplated Cu–Ni nanocomposite. Appl Phys Lett. 2007;90:244105.
  • Pellicer E, Varea A, Pané S, et al. Nanocrystalline electroplated Cu-Ni: metallic thin films with enhanced mechanical properties and tunable magnetic behavior. Adv Funct Mater. 2010;20:983–991.
  • Zhao W, Liu Z, Sun Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature. 2017;549:247–251.
  • Ghosh SK, Grover AK, Dey GK, et al. Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf Coat Technol. 2000;126:48–63.
  • Bettge M, Chatterjee J, Haik Y. Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia. BioMag Res Technol. 2004;2:4.
  • Cullity BD, Stock SR. Elements of X-ray diffraction. 3 ed. internat. ed. Upper Saddle River (NJ): Pearson/Prentice Hall; 2001.
  • Ben Aissa MA, Tremblay B, Andrieux-Ledier A, et al. Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization. Nanoscale. 2015;7:3189–3195.
  • Li J, Li P, Li J, et al. Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2 support for an enhanced CO methanation performance. Catalysts. 2019;9:506.
  • Brown WF. Magnetic interactions of superparamagnetic particles. J Appl Phys. 1967;38:1017–1018.
  • Yoon M, Kim Y, Kim YM, et al. Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film. Mater Chem Phys. 2005;91:104–107.
  • He L, Zheng W, Zhou W, et al. Size-dependent magnetic properties of nickel nanochains. J Phys Condens Matter. 2007;19:036216.
  • Bechmann R, Hearmon RFS, Malamud H. Landolt-Börnstein, numerical data and functional relationships in science and technology. Phys Today. 1967;20:80–81.
  • Wijn HPJ ed. Alloys and compounds of d-elements with main group elements. Part 1. Berlin/ Heidelberg: Springer-Verlag; 1999. DOI:10.1007/b52852
  • Kodama RH, Berkowitz AE, McNiff EJ Jr., et al. Surface spin disorder in NiFe 2 O 4 nanoparticles. Phys Rev Lett. 1996;77:394–397.
  • Lu HM, Zheng WT, Jiang Q. Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J Phys D: Appl Phys. 2007;40:320–325.
  • Esteban-Cubillo A, Pina-Zapardiel R, Moya JS, et al. Stabilization of superparamagnetic nickel nanoparticles in a sepiolite matrix. J Nanopart Res. 2010;12:1221–1229.
  • Conde F, Gómez-Polo C, Hernando A. Superparamagnetic behavior and giant magnetoresistance in as-obtained Co-Ag metastable alloys. J Magn Magn Mater. 1994;138:123–131.
  • Goya GF, Morales MP. Field dependence of blocking temperature in magnetite nanoparticles. JMNM. 2004;20–21:673–678.
  • Rondinone AJ, Samia ACS, Zhang ZJ. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe 2 O 4 spinel ferrite nanocrystallites. J Phys Chem B. 1999;103:6876–6880.
  • Li W, Fortner JD. (Super)paramagnetic nanoparticles as platform materials for environmental applications: from synthesis to demonstration. Front Environ Sci Eng. 2020;14:77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.