116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and capacitance performance of few-layer graphene

, , &
Pages 382-388 | Received 09 Aug 2021, Accepted 11 Nov 2021, Published online: 18 Nov 2021

References

  • Gonzalez A, Goikolea E, Barrena JA, et al. Review on supercapacitors: technologies and materials. Renew Sust Energ Rev. 2016;58:1189–1206.
  • Pal B, Yang SY, Ramesh S, et al. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. 2019;1(10):3807–3835.
  • Xie Y. Electrochemical performance of transition metal-coordinated polypyrrole: a mini review. Chem Record. 2019;19(12):2370–2384.
  • Chen Y, Xie Y. Electrochemical performance of manganese coordinated polyaniline. Adv Electron Mater. 2019;5(12):1900816.
  • Xie Y, Yao C. Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Mater Res Express. 2019;6(12):125550.
  • Ma J, Xie Y. Electrochemical performance of the homologous molybdenum (vi) redox-active gel polymer electrolyte system. New J Chem. 2021;45(7):3418–3431.
  • Abdah MAAM, Azman NHN, Kulandaivalu S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des. 2020;186:108199.
  • Wang Y, Xie Y. Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor. J Alloy Compd. 2020;824:153936.
  • Li P, Ruan C, Xu J, et al. Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet. Electrochim Acta. 2020;330:135334.
  • Xie Y. Preparation and electrochemical properties of flow-through TiO2 nanoarray. J Nano Res. 2020;65:1–12.
  • Xie Y. Capacitive behavior of sodium ion pre-intercalation manganese dioxide supported on titanium nitride substrate. Nano. 2020;15(12):2050152.
  • Xu J, Xie Y. Dual-defects induced band edge reconstruction of tin dioxide via cobalt and nitrogen Co-doping for wearable supercapacitor application. J Power Sources. 2021;493:229685.
  • Xie Y. Photoelectrochemical performance of tubewall-separated titanium dioxide nanotube array photoelectrode. Asia-Pacific J Chem Eng. 2021;16(5). DOI:10.1002/apj.2688
  • Xie Y. Electrochemical properties of sodium manganese oxide/nickel foam supercapacitor electrode material. Inorg Nano-Metal Chem. 2021;1–8. DOI:10.1080/24701556.2021.1897617
  • Xie Y. Fabrication and electrochemical properties of flow-through PPY and PPY/PPY nanoarray. Chem Papers. 2021;75(5):1831–1840.
  • Xie Y. Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array. J Polym Eng. 2021;41(2):137–143.
  • Jiang K, Sun B, Yao M, et al. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous Mesoporous Mater. 2018;265:189–194.
  • Yao M, Wang N, Yin J, et al. Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity. J Mater Sci. 2017;28:11119–11124.
  • Yao M, Wang B, Wang N, et al. Self-supported composite of (Ni,Co)3C mesoporous nanosheets/N-doped carbon as a flexible electrocatalyst for pH-universal hydrogen evolution. ACS Sustain Chem Eng. 2020;8(13):5287–5295.
  • Kausar A. Applications of polymer/graphene nanocomposite membranes: a review. Mater Res Innovations. 2019;23(5):276–287.
  • Xie Y. Electrochemical and hydrothermal activation of carbon fiber supercapacitor electrode. Fibers Polym. 2021. DOI:10.1007/s12221-021-0059-1
  • Xie Y. Synthesis and electrochemical performance of an electroactive nitrogen-doping SnO2 nanoarray supported on carbon fiber. J Chem Res. 2021;45(7–8):738–746.
  • Ruan C, Xie Y. Electrochemical performance of activated carbon fiber with hydrogen bond-induced high sulfur/nitrogen doping. RSC Adv. 2020;10(62):37631–37643.
  • Ruan C, Li P, Xu J, et al. Electrochemical performance of hybrid membrane of polyaniline layer/full carbon layer coating on nickel foam. Prog Org Coat. 2020;139:105455.
  • Wu P, He J, Chen L, et al. Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. J Energy Chem. 2018;27(5):1509–1515.
  • Park HJ, Meyer J, Roth S, et al. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon. 2010;48(4):1088–1094.
  • Gomez CV, Tene T, Guevara M, et al. Preparation of few-layer graphene dispersions from hydrothermally expanded graphite. Appl Sci. 2019;9(12):2539.
  • Wu J, Wang HF, Qiu J, et al. Electrochemical exfoliation for few-layer graphene in molybdate aqueous solution and its application for fast electrothermal film. Prog Nat Sci Mater Int. 2020;30(3):312–320.
  • Korkmaz S, Kariper IA. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J Energy Storage. 2020;27:101038.
  • Xie Y. Capacitive performance of reduced graphene oxide modified sodium ion-intercalated manganese oxide composite electrode. J Electrochem Energy Conversion Storage. 2021;18(3):31007.
  • Mohammed MMM, Chun DM. Electrochemical performance of few-layer graphene nano-flake supercapacitors prepared by the vacuum kinetic spray method. Coatings. 2018;8(9):302.
  • Sahoo SK, Ratha S, Rout CS, et al. Physicochemical properties and supercapacitor behavior of electrochemically synthesized few layered graphene nanosheets. J Solid State Electrochem. 2016;20(12):3415–3428.
  • Gee CM, Tseng CC, Wu FY, et al. Few layer graphene paper from electrochemical process for heat conduction. Mater Res Innovations. 2014;18(3):208–213.
  • Xie Y, Zhan Y. Electrochemical capacitance of porous reduced graphene oxide/nickel foam. J Porous Mater. 2015;22(2):403–412.
  • Xie Y, Wang Y. Electronic structure and electrochemical performance of CoS2/MoS2 nanosheet composite: simulation calculation and experimental investigation. Electrochim Acta. 2020;364:137224.
  • Mu Y, Ruan C, Li P, et al. Enhancement of electrochemical performance of cobalt (II) coordinated polyaniline: a combined experimental and theoretical study. Electrochim Acta. 2020;338:135881.
  • Xie Y, Mu Y. Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode. Electrochim Acta. 2021;391:138953.
  • Xu J, Ruan C, Li P, et al. S or N-monodoping and S,N-codoping effect on electronic structure and electrochemical performance of tin dioxide: simulation calculation and experiment validation. Electrochim Acta. 2020;340:135950.
  • Kumar A, Kumar N, Sharma Y, et al. Synthesis of free-standing flexible rGO/MWCNT films for symmetric supercapacitor application. Nanoscale Res Lett. 2019;14(1):266.
  • Zhang K, Zhang LL, Zhao XS, et al. Graphene/Polyaniline nanofiber composites as supercapacitor electrodes. Chem Mat. 2010;22(4):1392–1401.
  • Kumar NA, Choi HJ, Shin YR, et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano. 2012;6(2):1715–1723.
  • Dong XC, Cao YF, Wang J, et al. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2012;2(10):4364–4369.
  • Giri S, Ghosh D, Das CK. In situ synthesis of cobalt doped polyaniline modified graphene composites for high performance. supercapacitor electrode materials. J Electroanal Chem. 2013;697:32–45.
  • Jung I, Dikin DA, Piner RD, et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 2008;8(12):4283–4287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.