118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Construction of an electrocatalyst with oxygen-vacancy-rich nickel oxyhydroxide self-supported film for urea oxidation reaction

ORCID Icon &
Pages 464-471 | Received 10 Jan 2023, Accepted 11 Feb 2023, Published online: 07 Mar 2023

References

  • Yoo HD, Markevich E, Salitra G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today. 2014;17(3):110–121. DOI:10.1016/j.mattod.2014.02.014
  • Sun Z, Sun L, Koh SW, et al. Photovoltaic-powered supercapacitors for driving overall water splitting: a dual-modulated 3D architecture. Carbon Energy. 2022;4(6):1262–1273. DOI:10.1002/cey2.213
  • Carley S, Konisky DM. The justice and equity implications of the clean energy transition. Nat Energy. 2020;5(8):569–577.
  • Zhu D, Zhang H, Miao J, et al. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. J Mater Chem A. 2022;10(7):3296–3313. DOI:10.1039/D1TA09989B
  • Zhu B, Liang Z, Zou R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small. 2020;16(7):1906133.
  • Ye K, Wang G, Cao D, et al. Recent advances in the electro‑oxidation of urea for direct urea fuel cell and urea electrolysis. Top Curr Chem. 2018;376:41–78.
  • Zhang L, Wang L, Lin H, et al. A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew Chem Inter Ed. 2019;131(47):16976–16981. DOI:10.1002/ange.201909832
  • Patil SJ, Chodankar NR, Hwang SK, et al. Fluorine engineered self-supported ultrathin 2D nickel hydroxide nanosheets as highly robust and stable bifunctional electrocatalysts for oxygen evolution and urea oxidation reactions. Small. 2022;18(7):2103326. DOI:10.1002/smll.202103326
  • Lu S, Hummel M, Gu Z, et al. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon. ACS Sustain Chem & Eng. 2021;9(4):1703–1713. DOI:10.1021/acssuschemeng.0c07614
  • Babar P, Patil K, M LD, et al. Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method. J Colloid Interf Sci. 2021;584:760–769.
  • Zhang Q, Kazim FMD, Ma S, et al. Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Appl Catal B-Environ. 2021;280:119436.
  • Zhang J Z, Song X, Kang L, et al. Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions. Chem Catal. 2022;2(11):254–3270. DOI:10.1016/j.checat.2022.09.023
  • Ling T, Yan D, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat Commun. 2016;7(1):12876. DOI:10.1038/ncomms12876
  • Yan D, Li Y, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater. 2017;29(48):1606459. DOI:10.1002/adma.201606459
  • Yao M, Ge J, Sun B, et al. Solar-driven hydrogen generation coupled with urea electrolysis by an oxygen vacancy-rich catalyst. Chem Eng J. 2021;414:128753.
  • Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Inter Ed. 2016;128(17):5363–5367. DOI:10.1002/ange.201600687
  • Xie C, Yan D, Li H, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catal. 2020;10(19):11082–11098. DOI:10.1021/acscatal.0c03034
  • Zhao P, Yao M, Zhang Q, et al. Electrochemical behavior of representative electrode materials in artificial seawater for fabricating supercapacitors. Electrochim Acta. 2019;318:211–219.
  • Hu S, Feng C, Wang S, et al. Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition. ACS Appl Mater Interfaces. 2019;11(14):13168–13175. DOI:10.1021/acsami.8b19052
  • Yao M, Wang B, Sun B, et al. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl Catal B-Environ. 2021;280:119451.
  • Dionigi F, Strasser P. NiFe-based (oxy) hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater. 2016;6(23):1600621.
  • He L, Wang N, Sun B, et al. High-entropy FeCoNiMn(oxy) hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. J Cleaner Prod. 2022;356:131680.
  • Zhang Q, Zhang C, Liang J, et al. Orthorhombic α-NiOOH nanosheet arrays: phase conversion and efficient bifunctional electrocatalysts for full water splitting. ACS Sustainable Chem Eng. 2017;5(5):3808–3818. DOI:10.1021/acssuschemeng.6b02788
  • Cai M, Zhu Q, Wang X, et al. Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv Mater. 2022;35(7):2209338. DOI:10.1002/adma.202209338
  • Zhou F, Zhang X, Sa R, et al. The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chem Eng J. 2020;397:125454.
  • Zhu YP, Ma TY, Jaroniec M, et al. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew Chem Int Ed. 2017;56(5):1324–1328.
  • Chen C, Jin L, Hu L, et al. Urea-oxidation-assisted electrochemical water splitting for hydrogen production on a bifunctional heterostructure transition metal phosphides combining metal–organic frameworks. J Colloid Interface Sci. 2022;628:1008–1018.
  • Sun W, Li J, Gao W, et al. Recent advances on the pre-oxidation process in electrocatalytic urea oxidation reaction. Chem Commun. 2022;58(15):2430–2442. DOI:10.1039/D1CC06290E
  • Yoon J, Yoon YS, Kim DJ. Silver-nanoparticle-decorated NiOOH nanorods for electrocatalytic urea sensing. ACS Appl Nano Mater. 2020;3(8):7651–7658.
  • Huang L, Chen D, Luo G, et al. Zirconium-regulation-induced bifunctionality in 3D cobalt–iron oxide nanosheets for overall water splitting. Adv Mater. 2019;31(28):1901439. DOI:10.1002/adma.201901439
  • Geng SK, Zheng Y, Li SQ, et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat Energy. 2021;6(9):904–912. DOI:10.1038/s41560-021-00899-2
  • Li B, Song C, Rong J, et al. A new catalyst for urea oxidation: NiCo2S4 nanowires modified 3D carbon sponge. J Energy Chem. 2020;50:195–205.
  • Tong Y, Yu X, Wang H, et al. Trace level Co–N doped graphite foams as high-performance self-standing electrocatalytic electrodes for hydrogen and oxygen evolution. ACS Catal. 2018;8(5):4637–4644.
  • Chakrabarty S, Offen-Polak I, Burshtein TY, et al. Urea oxidation electrocatalysis on nickel hydroxide: the role of disorder. J Solid State Electr. 2021;25(1):159–171. DOI:10.1007/s10008-020-04744-6
  • Xie J, Liu W, Zhang X, et al. Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation. ACS Mater Lett. 2019;1(1):103–110. DOI:10.1021/acsmaterialslett.9b00124
  • Sun Z, Li K, Koh SW, et al. A green and simple method for energy storage and conversion application. J Mater Sci. 2021;56(4):3354–3363. DOI:10.1007/s10853-020-05430-8
  • Zhang Q, Sun M, Yao M, et al. Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interf Sci. 2022;623:617–626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.