100
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Broad-band-enhanced and minimal hysteresis perovskite solar cells with interfacial coating of biogenic plasmonic light trapping silver nanoparticles

ORCID Icon, , , , , & show all
Pages 521-536 | Received 23 Feb 2023, Accepted 02 Apr 2023, Published online: 24 Apr 2023

References

  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050–6051. DOI:10.1021/ja809598r
  • Ai B, Fan Z, Wong ZJ. Plasmonic–perovskite solar cells, light emitters, and sensors. Microsyst Nanoeng. 2022;8(1):5.
  • Qu Z, Ma F, Zhao Y, et al. Updated Progresses in Perovskite Solar Cells. Chin Phys Lett. 2021;38(1):107801. DOI:10.1088/0256-307X/38/10/107801
  • Danladi E, Onimisi MY, Garba S, et al. 9.05 % HTM free perovskite solar cell with negligible hysteresis by introducing silver nanoparticles encapsulated with P4VP Polymer. SN Appl Sci. 2020;2(11):1769. DOI:10.1007/s42452-020-03597-y
  • Zhi C, Li Z, Wei B. Recent progress in stabilizing perovskite solar cells through two-dimensional modification. APL Mater. 2021;9(7):070702.
  • Yang TY, Jeon NJ, Shin HW, et al. Achieving Long‐Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h. Adv Sci. 2019;6(14):1900528. 2019. 10.1002/advs.201900528
  • Ueno K, Oshikiri T, Sun Q, et al. Solid-State Plasmonic Solar Cells. Chem Rev. 2018;118(6):2955–2993. DOI:10.1021/acs.chemrev.7b00235
  • Jang YH, Jang YJ, Kim S, et al. Plasmonic Solar Cells: from Rational Design to Mechanism Overview. Chem Rev. 2016;116(24):14982–15034. DOI:10.1021/acs.chemrev.6b00302
  • Wu Y, Sun X, Dai S, et al. Broad-Band-Enhanced Plasmonic Perovskite Solar Cells with Irregular Silver Nanomaterials. ACS Appl Mater Interfaces. 2022;14(14):16269–16278. DOI:10.1021/acsami.2c01759
  • Li YF, Kou ZL, Feng J, et al. Plasmon-enhanced Organic and Perovskite Solar Cells with Metal Nanoparticles. Nanophotonics. 2020;9(10):3111–3133. DOI:10.1515/nanoph-2020-0099
  • Yao K, Zhong HJ, Liu ZL, et al. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano. 2019;13(5):5397–5409. DOI:10.1021/acsnano.9b00135
  • Gao Y, Zhang J, Zhang Z, et al. Plasmon-Enhanced Perovskite Solar Cells with Efficiency Beyond 21%: the Asynchronous Synergistic Effect of Water and Gold Nanorods. ChemPluschem. 2021;86(2):291–297. DOI:10.1002/cplu.202000792
  • Panigrahi S, Jana S, Calmeiro T, et al. Mapping the Space Charge Carrier Dynamics in Plasmon-based Perovskite Solar Cells. J Mat Chem A. 2019;7(34):19811–19819. DOI:10.1039/C9TA02852H
  • Juan F, Wu Y, Shi B, et al. Plasmonic Au Nanooctahedrons Enhance Light Harvesting and Photo carrier Extraction in Perovskite Solar Cell. ACS Appl Energy Mater. 2021;4(4):3201–3209. DOI:10.1021/acsaem.0c02973
  • Arinze ES, Qiu B, Nyirjesy G, et al. Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: practical Limits and Opportunities. ACS Photonics. 2016;3(2):158–173. DOI:10.1021/acsphotonics.5b00428
  • Zhang W, Saliba M, Stranks SD, et al. Enhancement of Perovskite-based Solar Cells Employing Core-shell Metal Nanoparticles. Nano Lett. 2013;13(9):4505–4510. DOI:10.1021/nl4024287
  • Luo Q, Zhang C, Deng X, et al. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells. ACS Appl Mater Interfaces. 2017;9(40):34821–34832. DOI:10.1021/acsami.7b08489
  • Zhang L, Liu T, Liu L, et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. J Mater Chem A. 2015;3(17):9165–9170. DOI:10.1039/C4TA04647A
  • Saliba M, Zhang W, Burlakov VM, et al. Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Adv Funct Mater. 2015;25(31):5038–5046. DOI:10.1002/adfm.201500669
  • Yuan Z, Wu Z, Bai S, et al. Hot-Electron Injection in a Sandwiched TiOx-Au-TiOx Structure for High-Performance Planar Perovskite Solar Cells. Adv Energy Mater. 2015;5(10):1500038. DOI:10.1002/aenm.201500038
  • Chen Z, Dong Q, Liu Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat Commun. 2017;8(1):1890. DOI:10.1038/s41467-017-02039-5
  • Thomas D, Danladi E, Ekwu MT, et al. Effect of Silver Nanoparticles Solar Cycle on TiO2 Nanoparticles Thin Film: optical and Structural Study. East Eur J Phys. 2022;4:118–124.
  • Katta V, Dubey R. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater Today Proc. 2021;45:794–798.
  • González‑pedroza MG, Benítez ART, Navarro‑marchal SA, et al. Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications. Sci Rep. 2023;13(1):790. DOI:10.1038/s41598-022-26818-3
  • Madani M, Hosny S, Alshangiti DM, et al. Green synthesis of nanoparticles for varied applications: green renewable resources and energy-efficient synthetic routes. Nanotechnol Rev. 2022;11(1):731–759. DOI:10.1515/ntrev-2022-0034
  • Khane Y, Benouis K, Albukhaty S, et al. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. Nanomaterials. 2022;12(12):2013. DOI:10.3390/nano12122013
  • Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114(15):7610–7630.
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6(3):399–408.
  • Lateef A, Azeez MA, Asafa TB, et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J Taibah Univ Sci. 2016;10(4):551–562. DOI:10.1016/j.jtusci.2015.10.010
  • Husseiny SM, Salah TA, Anter HA. Biosynthesis of size-controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci. 2015;4(3):225–231.
  • Shejawal KP, Randive DS, Bhinge SD, et al. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J Mater Sci Mater Med. 2021;32(2):19. DOI:10.1007/s10856-021-06489-8
  • Castro CA, Jurado A, Sissa D, et al. Performance of Ag-TiO2 photocatalysts towards the photocatalytic disinfection of water under interior-lighting and solar-simulated light irradiations. Int J Photoenergy. 2012;261045:10.
  • Malliga P, Pandiaraja J, Prithivikumaran N, et al. Influence of film thickness on structural and optical properties of sol-gel spin coated TiO2 thin film. IOSR J Appl Phys. 2014;6(1):22–28. DOI:10.9790/4861-06112228
  • Kangarlou H, Rafizadeh S. Influence of Thickness on Structural and Optical Properties of Titanium Oxide Thin Layers. In: Scanning Probe Microscopy - Physical Property Characterization at Nanoscale. IntechOpen; 2012. doi:10.5772/35763.
  • Ikhioya IL, Danladi E, Nnanyere DO, et al. Influence of precursor temperature on Bi doped ZnSe material via electrochemical deposition technique for photovoltaic application. J Niger Soc Phys Sci. 2022;4(1):123–129. DOI:10.46481/jnsps.2022.502
  • Wadatkar NS, Waghuley SA. Complex optical studies on conducting polyindole as-synthesized through chemical route. Egypt J Basic Appl Sci. 2015;2(1):19–24.
  • Mott NF, Davis EA. Electronic Processes in Non-Crystalline Materials. 2nd ed. Clarendon, Oxford; 1979.
  • Seery MK, George R, Floris P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem and Photobiol A Chem. 2007;189(2–3):258–263. DOI:10.1016/j.jphotochem.2007.02.010
  • Arjmand F, Golshani Z, Fatemi SJ, et al. The lead-free perovskite solar cells with the green synthesized BiI3 and AgI nanoparticles using Vitex agnus-castus plant extract for HTM-free and carbon-based solar cells. J Mater Res Technol. 2022;18:1922–1933.
  • Onimisi MY, Eli D, Garba S, et al. Band gap Narrowing and Urbach Energy increment of Titanium dioxide Using Silver Nanoparticles. Trans Niger Assoc Math Phys. 2020;10:177–184.
  • Wahyuni ET, Roto R. Silver Nanoparticle Incorporated Titanium Oxide for Bacterial Inactivation and Dye Degradation [Internet]. Titanium Dioxide - Material for a Sustainable Environment. InTech; 2018. doi:10.5772/intechopen.75918.
  • Balavijayalakshmi J, Ramalakshmi V. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J Appl Res Technol. 2017;15(5):413–422.
  • Basumatary P, Agarwal P. Photocurrent transient measurements in MAPbI3 thin films. J Mater Sci Mater Electron. 2020;31(17):10047–10054. 202. DOI:10.1007/s10854-020-03549-7.
  • Manju J, Jawhar SMJ. Synthesis of magnesium-doped TiO2 photoelectrodes for dye sensitized solar cell applications by solvothermal microwave irradiation method. J Mater Res. 2018;33(11):1534–1542.
  • Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978–982.
  • Hall WH. X-ray line broadening in metals. Proc Phys Soc Sect A. 1949;62(11):741–743.
  • Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and Size-strain plot methods of CdSe nanoparticles- a comparative study. Mater Chem Phys. 2020;239:122021.
  • Tasiu J, Danladi E, Ekwu MT, et al. Dye Sensitized Solar Cells with Silver Nanoparticles in nanocomposite Photoanode for Exploring Solar Energy Concept. J Nano Mater Sci Res. 2022;1(1):16–21.
  • Guo K, Li M, Fang X, et al. Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode. J Power Sources. 2013;230:155–160.
  • Danladi E, Onimisi MY, Garba S, et al. Improved Power Conversion Efficiency in Perovskite Solar Cell Using Silver Nanoparticles Modified Photoanode. IOP Conf Ser Mater Sci Eng. 2020;805(1):012005. DOI:10.1088/1757-899X/805/1/012005
  • Liu X, Hu L, Wang R, et al. Flexible Perovskite Solar Cells via Surface-Con?ned Silver Nanoparticles on Transparent Polyimide Substrates. Polymers. 2019;11(3):427. DOI:10.3390/polym11030427
  • Rong Y, Hu Y, Ravishankar S, et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ Sci. 2017;10(11):2383–2391. DOI:10.1039/C7EE02048A
  • Snaith HJ, Abate A, Ball JM, et al. Anomalous Hysteresis in Perovskite Solar Cells. J Phys Chem Lett. 2014;5(9):1511–1515. DOI:10.1021/jz500113x
  • Chen B, Yang M, Priya S, et al. Origin of J–V Hysteresis in Perovskite Solar Cells. J Phys Chem Lett. 2016;7(5):905–917. DOI:10.1021/acs.jpclett.6b00215
  • Christians JA, RCM F, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J Am Chem Soc. 2013;136(2):758–764.
  • Huangfu M, Shen Y, Zhu G, et al. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Appl Surf Sci. 2015;357(Part B):2234–2240. DOI:10.1016/j.apsusc.2015.09.215
  • Takahashi K, Suzuki Y. Perovskite solar cells with CuI inorganic hole conductor. Jpn J Appl Phys. 2017;56(8S2):08MC04.
  • Sepalage GA, Meyer S, Pascoe A, et al. Copper(i) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis. Adv Funct Mater. 2015;25(35):5650–5661. DOI:10.1002/adfm.201502541
  • Gharibzadeh S, Nejand BA, Moshaii A, et al. Two-step physical deposition of a compact CuI hole transport layer and the formation of an interfacial species in perovskite solar cells. ChemSuschem. 2016;9(15):1929–1937. DOI:10.1002/cssc.201600132
  • Nazari P, Ansari F, Nejand BA, et al. Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. J Phys Chem C. 2017;121(40):21935–21944. DOI:10.1021/acs.jpcc.7b07061
  • Uthayaraj S, Karunarathne DGBC, Kumara GRA, et al. Powder pressed cuprous iodide (CuI) as a hole transporting material for perovskite solar cells. Materials. 2019;12(13):2037. DOI:10.3390/ma12132037
  • Srivastava RP, Jung HS, Khang DY. Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells. Nanomaterials. 2022;12(9):1467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.