91
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of methyl parathion electrochemical sensor based on β-cyclodextrin decorated single-wall carbon nanotubes

, , , , &
Pages 154-160 | Received 11 Jul 2023, Accepted 21 Jul 2023, Published online: 04 Aug 2023

References

  • Xue X, Wei Q, Wu D, et al. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim Acta. 2014;116:366–371. doi: 10.1016/j.electacta.2013.11.075
  • Zhao H, Zhu G, Li F, et al. 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sensor Actuat: B Chem. 2023;380:133309. doi: 10.1016/j.snb.2023.133309
  • Guo M, Li F, Ran Q, et al. Facile fabrication of Zr-based metal–organic framework/Ketjen black-carbon nanotubes composite sensor for highly sensitive detection of methyl parathion. Microchem J. 2023;190:108709. doi: 10.1016/j.microc.2023.108709
  • Yuan S, Li C, Zhang Y, et al. Degradation of parathion methyl in bovine milk by high-intensity ultrasound:degradation kinetics, products and their corresponding toxicity. Food Chem. 2020;327:127103. doi: 10.1016/j.foodchem.2020.127103
  • Yue X, Han P, Zhu W, et al. Facile and sensitive electrochemical detection of methyl parathion based on a sensing platform constructed by the direct growth of carbon nanotubes on carbon paper. RSC Adv. 2016;6(63):58771–58779. doi: 10.1039/C6RA09335C
  • Li F, Liu R, Dubovyk V, et al. Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide. Food Chem. 2022;366:130563. doi: 10.1016/j.foodchem.2021.130563
  • Liu Y, Wang Q, Zhu G, et al. Novel electrochemical sensing platform based on palygorskite nanorods/super P Li carbon nanoparticles-graphitized carbon nanotubes nanocomposite for sensitive detection of niclosamide. Ceram Int. 2023;49(13):21234–21245. doi: 10.1016/j.ceramint.2023.03.253
  • Liu Y, Wu T, Zhao H, et al. An electrochemical sensor modified with novel nanohybrid of super-P carbon black@zeolitic-imidazolate-framework-8 for sensitive detection of carbendazim. Ceram Int. 2023;49(14):23775–23787. doi: 10.1016/j.ceramint.2023.04.217
  • Zhao H, Guo M, Li F, et al. Fabrication of gallic acid electrochemical sensor based on interconnected super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J Mater Res Technol. 2023;24:2100–2112. doi: 10.1016/j.jmrt.2023.03.129
  • Zhao H, Liu Y, Li F, et al. Facile synthesis of silicon dioxide nanoparticles decorated multi-walled carbon nanotubes with graphitization and carboxylation for electrochemical detection of gallic acid. Ceram Int. 2023;49(16):26289–26301. doi: 10.1016/j.ceramint.2023.05.135
  • Zhang Z, Liu X, Wu Y, et al. Synthesis and characterization of spherical Li2Fe0.5V0.5SiO4/C composite for high-performance cathode material of lithium-ion secondary batteries. J Electrochem Soc. 2015;162(4):A737–A742. doi: 10.1149/2.0781504jes
  • Zhang Z, Liu X, Wang L, et al. Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochim Acta. 2015;168:8–15. doi: 10.1016/j.electacta.2015.04.002
  • Zhang Z, Liu X, Wang L, et al. Synthesis of Li2FeSiO4/C nanocomposite via a hydrothermal-assisted sol–gel process. Solid State Ion. 2015;276:33–39. doi: 10.1016/j.ssi.2015.03.032
  • Zhang Z, Liu X, Wu Y, et al. Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries. J Solid State Electrochem. 2014;19(2):469–475. doi: 10.1007/s10008-014-2624-7
  • Zhao H, Li Y, Shen D, et al. Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles. J Mater Res Technol. 2020;9(4):7027–7033. doi: 10.1016/j.jmrt.2020.05.011
  • Zhao H, Hu N, Xu R, et al. Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance. Ceram Int. 2020;46(13):21805–21809. doi: 10.1016/j.ceramint.2020.05.256
  • Li D, Hu X, Zhao H, et al. One-step ultrasonication-assisted synthesis of graphitized multi-walled carbon nanotubes@Super P Li nanocomposite for the determination of isoproturon. J Porous Mater. 2022;29(3):629–640. doi: 10.1007/s10934-022-01201-9
  • Li D, Zhao H, Wang G, et al. Room-temperature ultrasonic-assisted self-assembled synthesis of silkworm cocoon-like COFs@GCNTs composite for sensitive detection of diuron in food samples. Food Chem. 2023;418:135999. doi: 10.1016/j.foodchem.2023.135999
  • Li D, Zhao H, Wang G, et al. Ultrasensitive determination of diquat using a novel nanohybrid sensor based on super-P nanoparticles dispersed palygorskite nanofibers. Sens Actuat B: Chem. 2022;367:132142. doi: 10.1016/j.snb.2022.132142
  • Chen M, Hou C, Huo D, et al. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite. Appl Surf Sci. 2016;364:703–709. doi: 10.1016/j.apsusc.2015.12.203
  • Kumar THV, Sundramoorthy AK. Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc. 2018;165(8):B3006–B3016. doi: 10.1149/2.0021808jes
  • Peng G, Wu S, Ellis JE, et al. Single-walled carbon nanotubes templated CuO networks for gas sensing. J Mater Chem C. 2016;4:6575–6580. doi: 10.1039/C6TC01722C
  • Yao Y, Zhang L, Duan X, et al. Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim Acta. 2014;127:86–94. doi: 10.1016/j.electacta.2014.02.013
  • Fu X-C, Zhang J, Tao Y-Y, et al. Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta. 2015;153:12–18. doi: 10.1016/j.electacta.2014.11.144
  • Li F, Liu R, Dubovyk V, et al. Rapid determination of methyl parathion in vegetables using electrochemical sensor fabricated from biomass-derived and β-cyclodextrin functionalized porous carbon spheres. Food Chem. 2022;384:132643. doi: 10.1016/j.foodchem.2022.132643
  • Zhou Y, Wu T, Zhang H. Surface optimization of glassy carbon electrode with graphitized and carboxylated multi-walled carbon nanotubes@β‐cyclodextrin nanocomposite for electrochemical determination of methyl parathion. Int J Electrochem Sci. 2022;17(6):220653. doi: 10.20964/2022.06.50
  • Zhao H, Ma H, Li X, et al. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl Clay Sci. 2021;200:105907. doi: 10.1016/j.clay.2020.105907
  • Zhao H, Ran Q, Li Y, et al. Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode. J Mater Res Technol. 2020;9(4):9422–9433. doi: 10.1016/j.jmrt.2020.05.102
  • Zhao H, Chen B, Cheng C, et al. A simple and facile one-step strategy to synthesize orthorhombic LiMnO2 nano-particles with excellent electrochemical performance. Ceram Int. 2015;41(10):15266–15271. doi: 10.1016/j.ceramint.2015.07.213
  • Zhao H, Li F, Shu X, et al. Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties. Ceram Int. 2018;44(16):20575–20580. doi: 10.1016/j.ceramint.2018.07.206
  • Zhao H, Liu S, Cai Y, et al. A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2−2xO4 (0≤x≤0.10) with enhanced cycling stability and rate capability. J Alloy Compd. 2016;671:304–311. doi: 10.1016/j.jallcom.2016.02.091
  • Zhao H, Liu S, Liu X, et al. Orthorhombic LiMnO2 nanorods as cathode materials for lithium-ion batteries: Synthesis and electrochemical properties. Ceram Int. 2016;42(7):9319–9322. doi: 10.1016/j.ceramint.2016.01.207
  • Zhao H, Liu S, Wang Z, et al. LiSixMn2−xO4 (x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceram Int. 2016;42(12):13442–13448. doi: 10.1016/j.ceramint.2016.05.131
  • Zhao H, Wang J, Wang G, et al. Facile synthesis of orthorhombic LiMnO2 nanorods by in-situ carbothermal reduction: promising cathode material for Li ion batteries. Ceram Int. 2017;43(13):10585–10589. doi: 10.1016/j.ceramint.2017.04.158
  • Zhao H, Li B, Liu R, et al. Ultrasonic-assisted preparation of halloysite nanotubes/zirconia/carbon black nanocomposite for the highly sensitive determination of methyl parathion. Mater Sci Eng C Mater Biol Appl. 2021;123:111982. doi: 10.1016/j.msec.2021.111982
  • Zhao H, Chang Y, Liu R, et al. Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem. 2021;343:128484. doi: 10.1016/j.foodchem.2020.128484
  • Zhao H, Liu B, Li Y, et al. One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion. Ceram Int. 2020;46(12):19713–19722. doi: 10.1016/j.ceramint.2020.04.277
  • Erady V, Mascarenhas RJ, Satpati AK, et al. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of caffeic acid. Microchem J. 2019;146:73–82. doi: 10.1016/j.microc.2018.12.023
  • Nie X, Zhang R, Tang Z, et al. Sensitive and selective determination of tryptophan using a glassy carbon electrode modified with nano-CeO2/reduced graphene oxide composite. Microchem J. 2020;159:105367. doi: 10.1016/j.microc.2020.105367
  • Wan Y, Ma X, Hao J, et al. Titanium-based nanorods/ketjen black modified separator as polysulfides barrier for lithium sulfur cell. J Alloy Compd. 2020;842:155830. doi: 10.1016/j.jallcom.2020.155830
  • Wang Z, Liu Y, Li F, et al. Electrochemical sensing platform based on graphitized and carboxylated multi-walled carbon nanotubes decorated with cerium oxide nanoparticles for sensitive detection of methyl parathion. J Mater Res Technol. 2022;19:3738–3748. doi: 10.1016/j.jmrt.2022.06.120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.